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Abstract: In these lectures, we develop the theory of the Colour Glass
Condensate. This is the matter made of gluons in the high density environ-
ment characteristic of deep inelastic scattering or hadron-hadron collisions
at very high encrgy. The lectures are self contained and comprehensive.
They start with a phenomenological introduction, develop the theory of
classical gluon fields appropriate for the Colour Glass, and end with a
derivation and discussion of the renormalization group equations which
determine this effective theory.

1 General Considerations

1.1 Introduction

The goal of these lectures is to convince you that the average properties of
hadronic interactions at very high energies are controlled by a new forin of mat-
ter, a dense condensate of gluons. This is called the Colowr Glass Condensate
since

o Colour: The gluons are coloured.

e Glass: The associated fields evolve very slowly relative to natural time
scales, and are disordered. This is like a glass which is disordered and is
a liquid on long time scales but seems to be a solid on short time scales.
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e Condensate: There is a very high density of massless gluons. These gluons
can be packed until their phase space density is so high that interactions
prevent more gluon occupation. With increasing energy, this forces the
gluons to oceupy higher momenta, so that the coupling becomes wealk.
The gluon density saturates at a value of order 1/wvg 53+ 1. corresponding
to a multiparticle state which is a Bose condensate.

In these lectures, we will try to explain why the above is very plausible.

Before doing this, however, it is useful to review some of the typical features
of hadronic interactions, and some unanswered theoretical questions which are
agsociate with these phenomena. This will motivate much of the later discussion.

1.2 Total Cross Sections at Asymptotic Energy

Computing total cross sections as £ — oo is one of the great unsolved problems
of QCD. Uunlike for processes which are computed in perturbation theory, it is
not required that any energy transfer become large as the total collision energy
E — oo. Computing a total cross section for hadronic scattering therefore
appears to be intrinsically non-perturbative. In the 60's and early 70’s, Regge
theory was extensively developed in an attempt to understand the total cross
section. The results of this analysis were to our mind inconclusive, and certainly
can not be claimed to be a first principles understanding from QCD.

The total cross section for pp and Pp collisions is shown in Fig. 1. Typically, it
is assumed that the total cross section grows as In? E as E — oo. This is the
so called Froissart bound, which corresponds to the maximal growth allowed
by the unitarity of the scattering matrix. Is this correct? Is the coeflicient of
In? E universal for all hadronic precesses? Why is the unitarity limit saturated?
Can we understand the total cross section from first principles in QCD? Is it
understandable in weakly coupled QCD, or is it an intringically non-perturbative
phenomenon?

1.3 Particle Production in High Energy Collisions

In order to discuss particle production, it is useful to introduce some kinematical

sariables adapted for high energy collisions: the light cone coordinates. Let
z be the longitudinal axis of the collision. For an arbitrary d-vector o =
(1’0, ol 02, 0%) (03 = v,, ete.), we define its light-cone (LC) coordinates as
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In particular, we shall refer to ™ = (¢t + z)/ V2 as the LC “time”, and to
&~ = (t—z)/v/2 as the LC “longitudinal coordinate™. The invariant dot product
reads:

pero=patdpteT —py-ay, (1.2)
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Figure 1: The cross sections for pp and pp scattering.



which suggests that p~ — the momentum variable conjugate to the “time” 2%
— should be interpreted as the LC energy, and pt as the (LC) longitudinal
momentum. In particular. for particles on the mass-shell: p* = (E 4 p-)/v?2,
with E = (m? + p?)V/2, and therefore:

- 1. 9 1, s 2 JE .
ptp~ = ;2—(E2 —p:) = 3(])1 +m*) = 5 M1 (1.3)

This equation defines the transverse mass ny . We shall alzo need the rapidity
2p+‘3
In

1, pt 1
y= —ln— =~ 5
2 my

=3 (1.4)

These definitions are useful, among other reasons, because of their simple prop-
erties under longitudinal Lorentz boosts: pT — wpt, p~ — (1/x)p~, where & is
a constant. Under boosts. the rapidity is just shifted by a constant: v — y -+ x.
Consider now the collision of two identical hadrons in the center of mass frame,
as shown in Fig. 2. In this figure, we have assumed that the colliding hadrons
have a transverse extent which is large compared to the size of the produced
particles. This is true for nuclei, or if the typical transverse mowmenta of the
produced particles is large compared to Agcp, since the corresponding size will
be much smaller than a Fermi. We have also assumed that the colliding particles
have an energy which is large enough so that they pass through one another and
produce mesons in their wake. This is known to happen experimentally: the
particles which carry the quantum numbers of the colliding particles typically
lose only some finite fraction of their momenta in the collision. Because of their
large energy, the incoming hadrons propagate nearly at the speed of light, and
therefore are Lorentz contracted in the longitudinal direction, as suggested by
the figure.

In LC coordinates, the right moving particle (“the projectile”) Lhas a &momentum
pf = (pf’,pf,ol) with pf’ ~ /2p. and py = A?/2pt (since p. » M, with
M = the projectile mass). Similarly, for the left moving hadron (“the tar-
get”), we have pi = p[ and p; = pf. The invariant energy squared is
s = (p1+ p2)* = 2py - pa = prpg" ~ 4p?, and coiucides, at it should, with
the total energy squared (E; + E3)* in the center of mass frame.

We define the longitudinal momentum fraction, or Feynman's x, of a produced
pion as

D

+
= 7 15
X = 7 (L.5)
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(with 0 < x < 1). The rapidity of the pion is then

1. pt 1 2p72 1 A o
v = —1111—71:7111 ‘17.:, = Vproj — I =+ In—, (1.6)
2 2 my X ML

where ¥,.0; = In(v2pf /M) = In(\/s/M). The pion rapidity is in the range
~Yproj S Y S Yproj (Up to an overall shift by Ay =In(Al/m ).
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Figure 2: A hadron-hadron collision. The produced particles are shown as
circles.

dN
dy
PR W
' s
g S
, N
’ »
I \
‘
I
¢
‘
4
’
’
.
¥
N Yoroi
“ pro < proj

Figure 3: The rapidity distribution of particles produced in a hadronic collision.

A typical distribution of produced particles (say, pions) in a hadrouic collision
is shown in Fig. 3. We denote by dN/dy the number of produced particles per
unit rapidity. The leading particles are shown by the solid line and are clustered
around the projectile and target rapidities. For example, in a heavy lon collision,
this is where the nucleons would be. The dashed line is the distribution of
produced mesons. Several theoretical issues arise in multiparticle production:
Can we compute dN/dyv ? Orv even dN/dy at v = 0 (“central rapidity™) 7
How does the average transverse momentum of produced particles (p1 ) behave
with energy? What is the ratio of produced strange/unonstrange mesons, and
corresponding ratios of charm, top, bottom ete at y = 0 as the center of mass
energy approaches infinity? Does multiparticle production as s — oo at y = 0
become simple. understandable and computable?

Note that v = 0 corresponds to particles with p. = 0 or p* = m /2, for
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Figure 4: Feyvnman scaling of rapidity distributions. The two different lines
correspond to rapidity distributions at different energies.

which x = m./(V2p) = mi/V/s is small, x < 1, in the high-energy limit
of interest. Thus, presumably, the multiparticle production at central rapidity
reflects properties of the small-x degrees of freedom in the colliding hadron
wavefunctions.

There is a remarkable feature of rapidity distributions of produced hadrons,
which we shall refer to as Feynman scaling. If we plot rapidity distributions
of produced hadrons at different energies, then as function of ¥ — yprej, the
rapidity distributions are to a good approximation independent of energy. This
is illustrated in Fig. 4, where the rapidity distribution measured at one energy
is shown with a solid line and the rapidity distribution at a different, higher,
energy is shown with a dotted line. (In this plot, the rapidity distribution at
the lower energy has been shifted by an amount so that particles of positive
rapidity begin their distribution at the same ypro, as the high energy particles,
and correspondingly for the negative rapidity particles. This of course leads to
a gap in the center for the low energy particles due to this mapping.)

This means that as we go to higher and higher energies, the new plysics i
associated with the additional degrees of freedomn at small rapidities in the center
of mass frame (small-x degrees of freedom). The large x degrees of freedom do
not change much. This snggests that there may be some sort of renormalization
group description in rapidity where the degrees of freedom at larger x are held
fixed as we go to smaller values of x. We shall see that in fact these large x
degrees of freedom act as sources for the small x degrees of freedom. and the
renormalization group is generated by integrating out degrees of freedom at
relatively large x to generate these sources.

1.4 Deep Inelastic Scattering

In Fig. 5, deep inelastic scattering is shown. Here an electron emits a virtual
photon which scatters from a quark in a hadron. The momentum and energy
transfer of the electron is measured, but the results of the hadron break up are



electron

photon

quark £ )

hadron

Figure 5: Deep inelastic scattering of an electron on a hadron.

not. In these lectures. we do not have sufficient time to develop the theory
of deep inelastic scattering (see, e.g., [1] for more details). For the present
purposes, it is enough to say that, at large mowmentum transfer Q7 > Af\?(wp.
this experiment can be used to measure the distributions of quarks in the hacron.
To describe the quark distributions, it is convenient to work in a reference frame
where the hadron has a large light-cone longitudinal momentum P~ 3 M
(“infinite momentum frame”). In this frame, one can describe the hadron as
a collection of constituents (“partons”), which are nearly on-shell excitations
carrying some fraction x of the total longitudinal momentum P7. Thus, the
longitudinal momentun of a parton is pt = xPT, with 0 < x < L

For the struck quark in Fig. 5, this x variable (“Feynman’s x”) is equal to the
Bjorken variable xg;j, which is defined in a frame independent way as xp; =
Q?/2P - g, and is directly measured in the experiment. In this definition, Q? =
—qtqy,, with ¢* the (space-like) 4-momentum of the exchanged photon. The
condition that x = xp, is what maximizes the spatial overlap between the
struck quark and the virtual photon, thus making the interaction favourable.
The Bjorken variable scales like xg; ~ Q2/s. with s = the invariant energy
squared. Thus, in deep inelastic scattering at high energy (large s at fixed Q%)
one measures quark distributions dNgyerr/dx at small x (x < 1).

Tt is useful to think about these distributions as a function of rapidity. We define
the rapidity in deep inelastic scattering as

Y = Yhadron — 111(1/5‘:), (1.7)

and the invariaut rapidity distribution as

AN AN

—_— = X

dy dx
In Fig. 6. a typical dN/dy distribution for constituent gluons of a hadron is

shown. This plot is similar to the rapidity distribution of produced particles in
hadron-hadron collisions (see Fig. 3). The main difference is that, now, we have

-1
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Figure 6: The rapidity distribution of gluons inside of a hadron.

only half of the plot, corresponding to the right moving hadron in a collision in
the center of mass frame.

One may in fact argue that there is indeed a relationship between the structure
functions as measured in deep inelastic scattering and the rapidity distributions
for particle production. We expect, for instance, the gluon distribution function
to be proportional to the pion rapidity distribution. This is what cowmes out in
many models of particle production. It is further plausible, since the degrees of
freedom of the gluons should not be lost, but rather converted into the degrees
of freedom of the produced hadrons.

The small x problem is that in experiments at HERA, the rapidity distributions
for quarks and gluons grow rapidly as the rapidity difference

T = 111( //X) = Yhadron — Y (1.9)

between the quark and the hadron increases [2]. This growth appears to be
more rapid than 7 or 7%, and various theoretical models based on the original
considerations by Lipatov and colleagues [3] suggest it may grow as an expo-
nential in 7 [3, 4]. The more established DGLAP evolution equation {5] predicts
a less rapide growth, like an exponential in /7, but this is still exceeding the
Froissart unitarity bound, which requires rapidity distributions to grow at most
as 72 (since 7 ~ In s).

In Fig. 7, the ZEUS data for the gluon distribution are plotted for Q2 =
5 GeV?, 20 GeV? and 200 GeV? [2]. The gluon distribution is the number of
gluons per unit rapidity in the hadron wavefunection, xG(x, QE) = dNgtyons [y .
Experinientally, it is extracted from the data for the quark structure functions,
by exploiting the dependence of the latter upon the resolution of the probe, that
is, upon the transferred momentum Q2. Note the rise of xG(x, Q%) at small x:
this is the small x problem. If one had plotted the total multiplicity of produced
particles in pp and Pp collisions on the same plot, one would have found rough
agreement in the shape of the curves.

8
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Figure 7: The Zeus data for the gluon structure functions.
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Figure 8: Saturation of gluons in a hadron. A view of a hadron head on as x
decreases.




Why is the small x rise in the gluon distribution a problem? Consider Fig. 8,
where we view the hadron head on. The constituents are the valence quarks,
gluons and sea quarks shown as coloured circles. Az we add more and more
constituents, the hadrou becomes more and more crowded. If we were to try
to measure these constituents with say an elementary photon probe, as we do
in deep inelastic scattering, we might expect that the hadron would become
50 crowded that we could not ignore the shadowing effects of constituents as
we make the measurement. (Shadowing means that some of the partons are
obscured by virtue of having another parton in front of them. This would result
in a decrease of the scattering cross section relative to what is expected from
incoherent independent scattering.)

We shall later argue that the distribution functions at fixed Q% saturate, which
weans that they cease growing so rapidly at high energy [6. 7, 8. 9, 10]. (See also
Refs. [11, 12, 13, 14] for recent reviews and more references.) This saturation
will be seen to occur at transverse momenta below some intringic scale, the
“saturation scale”, which is estimated as:

1 dN

—_— 1.10
aR2 dy’ (1.10)

Q‘f = N,

where dN/dy is the gluon distribution. Ouly gluons matter since, at small x,
the gluon density grows faster then the quark density, and is the driving force
towards saturation. This is why in the forthcoming considerations we shall
ignore the (sea) quarks, but focus on the gluons alone. Furthermore, 7R> —
with R the hadron radius — is the area of the hadron in the transverse plane.
(This is well defined as long as the wavelengths of the external probes are small
compared to R.) Finally, o N, is the colour charge squared of a single gluon.
Thus, the “saturation scale™ (1.10) has the meaning of the average colour charge
squared of the gluous in the hadron wavetunction per unit transverse area.
Since the gluon distribution increases rapidly with the energv. as shown by the
HERA data, so does the saturation scale, We shall use the rapidity ditference
7 = In(1/x) ~ In s, eq. (1.9), to characterize this increase, and write Q2 = Q%(7).
For sufficiently large 7 (i.e., high enough energy, or small enough x),

QA7) > Adep. (1.11)

and os(Q?%) < 1. Then we are dealing with weakly coupled QCD, 50 we should
be able to perform a first principle calculation of, e.g.,

e the gluon distribution function;
e the quark and heavy quark distribution functions:
e the intrinsic py distributions of quarks and gluons.

But weak coupling does not necessarily mean that the physics is perturbative.
There are many examples of nonperturbative phenomena at weak coupling. An
example is instantons in electroweak theory, whichi lead to the violation of baryon

10



number. Another example is the atomic physics of highly charged nuclei, where
the electron propagates in the background of a strong nuclear Coulomb field.
Also. at very high temperature, QCD becomes a weakly coupled quark-gluon
plasma, but it exhibits nonperturbative phenomena on large distances r 33 1/T
(with T the temperature), due to the collective behaviour of many quanta [15].
T idammsnndnn o A pimmny vavm oy 1] me celocman o e aw kDo 4l b PR D doas s TS Y I by e
NELULIILLES VO OUL bllldll-x Z1HO0LL, WE NOLICE Lildl, b 10W Lldlsvelse IO b
Q% < Q*(r), they make a high density system. in which the interaction proba-
bility

as(Q*) 1 dN

—(‘22— m E ~ 1 when Q2 ~ (‘)Z)(T) (1].2)

is of order one [6, 7, 16]. That is, although the coupling is small, a,(Q?) < L,
the effects of the interactions are amplified by the large gluon density (we shall
see that dN/dy ~ 1/c, at saturation), and ordinary perturbation theory breaks
down.

To cope with this, a resummation of the high density effects is necessary. QOur
strategy to do so — to be described at length in these lectures — will be to
construct an effective theory in which the small-x gluons are describecd as the
classical colour fields radiated by “colour sources” at higher rapidity. Physically,
these sources are the “fast” partons, ie., the hadron constitueuts with larger
longitudinal momenta p* > xP*+. The properties of the colour sources will be
obtained via a renonmalization group analysis, in which the “fast” partons ave
integrated out in steps of rapidity and in the background of the classical field
generated at the previous steps.

The advantage of this strategy is that the non-linear effects are dealt with in o
classical context, which makes exact calculations possible. Specitically, (a) the
clagsical field problem will be solved exactly, and (b) at each step in the renor-
malization group analysis, the non-linear effects associated with the classical
fields will be treated exactly. On the other hand, the mutual interactions of the
fast partons will be treated in perturbation theory, in a “leading-logarithmic”
approximation which resums the most important quaintum corrections at high
energy (namely, those which are enhanced by the large logarithm In(1/x)).

As we shall see, the resulting effective theoryv describes the saturated gluons as
a Colour Glass Condensate. The classical field approximation is appropriate for
these saturated gluons, because of the large occupation number Ny, ~ 1/, 3 1
of their true quantum state. In this limit, the Heisenberg commutators hetween
particle creation and annihilation operators become negligible:

[ (.1;} =1 « CIZ:(u. =Ny, (1.13)

which corresponds indeed to a classical regime. The classical field language
is also well adapted to describe the coherence of these small-x gluons, which
overlap with each other because of their large longitudinal wavelengths.

The phenomenon of saturation provides also a natural solution to the unitarity
problem alluded to before. We shall see that. with increasing energy, the new
partons are produced preponderently at momenta py < Q.. Thus, these new

11



partons have a typical transverse size ~ 1/p) S 1/, Smaller is x (i.e., larger
is 1), larger is Q4(7), and therefore smaller are the newly produced partons.
An external probe of transverse resolution Ar; ~ 1/@ will not see partons
smaller than this resolution size. For 7 large enough, Q? < Q%(7). so that the
partons produced when further increasing the energy will not contribute to the
cross section at fixed Q2. Thus, although the gluon distribution keeps increasing
with 7, there is nevertheless no contradiction with unitarity.

1.5 Geometrical Scaling

Another striking feature of the experimental data at HERA is geometrical scul-
ing at Bjorken x < 0.01 [17]. In general, one expects the structure functions
extracted from deep inelastic scattering to depend upon two dimensionless kine-
matical variables, x and Q?/A%, where A? is some arbitrary momentum scale
of reference, which is fixed. The striking feature alluded to before is the obser-
vation that the x dependence measured at HERA at x < (.01 and for a broad
region of Q? (between 0.045 and 450 Gev?) can be entirely accounted for by a
corresponding dependence of the reference scale A® — 1/R*(x) alone. That is.
rather than being functions of two independent variables x and Q?/A%, the mea-
sured structure functions at x <2 (.01 depend effectively only upon the scaling
variable

T = Q*R*(x) (1.14)

where R*(x) ~x* and A ~ 0.3 --0.4 in order to fit the data. This is illustrated in
Fig. 9 [17]. Such a scaling behaviour is consistent with the saturation scenario
[18, 10, 19], as we shall discuss towards the end of these lectures. Note however
that the experimentally observed scaling extends to relatively large values of
x and @2, above all the estimates for the saturation scale. Thus, this feature

seems to be more general than the phenomenon of saturation.

1.6 Universality

There are two separate formulations of universality which are important in un-
derstanding small x physics.

a) The first is a weak universality [8, 10]. This is the statement that at suth-
ciently high energy, physics should depend upon the gpecitic properties of the
hadron at hand (like its size or atomic number 4) only via the saturation scale
Qs(7. A). Thus, at high energy, there should be some equivalence between nu-
clei and protons: When their Q? values are the same, their properties must
be the same. An empirical parameterization ot the gluon structure function in
eq. (1.10) is

1 AN A4l3

By e (1:19)

where § ~ 0.2 — 0.3 [2]. This suggests the following correspondences:
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Figure 9: Experimental data on the cross section for virtual plioton-proton deep
inelastic scattering from the region x < 0.01 plotted verses the scaling variable

T = QR%(x) [17].
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e RHIC with nuclei ~ HERA with protons;
o LHC with nuclei ~ HERA with nuclei.

Estimates of the saturation scale for nuclei at RHIC energies give ~ 1 — 2 Gev,
and at LHC Q4 ~ 2 — 3 Gev.

b) The second is a strong universality which is meant in a statistical mechanical
sense. This is the statement that the effective action which describes small x
distribution function is critical and at a fixed point of some renormalization
group. This means that the behavior of correlation functions is given by uni-
versal critical exponents, which depend only on general properties of the theory
such as its symmetries and dimensionality.

1.7 Some applications

We conclude these introductory considerations with a (non-exhaustive) ennmer-
ation of recent applications of the concept of saturation and the Colour Glass
Condensate (CGC) to phenomenology.

Consider deep inelastic scattering first. It has been shown in Refs. [18] that
the HERA data for (both inclusive and diffractive) structure functions can be
well accounted for by a phenomenological model which incorporates saturation.
The same model has motivated the search for geometrical scaling in the data,
as explained in Sect. 1.5.

Coming to ultrarelativistic heavy lon collisions, as experimentally realized at
RHIC and, in perspective, at LHC, we note that the CGC should be the ap-
propriate description of the initial conditions. Indeed, most of the multiparticle
production at central rapidities is from the small-x (x < 107?3) partons in the
uuclear wavefunctions, which are in a high-density, semi-classical, regime. The
early stages of a nuclear collision, up to times ~ 1/Qy, can thus be described as
the melting of the Colour Glass Condensates in the two nuclei. In Refs. [20], this
melting has been systematically studied, and the multiparticle production com-
puted, via numerical simulations of the classical effective theory (8, 21]. After
they form, the particles scatter with each other, and their subsequent evolution
can be described by transport theory [22].

The first experimental data at RHIC [23] have been analyzed from the perspec-
tive of the CGC in Refs. [24, 25, 26]. Specifically, thie inultiparticle production
has been studied with respect to its dependence upon centrality (“number of
participants”) [24], rapidity [25] and transverse momentum distribution [26].
The charm production from the CGC in peripheral heavy-ion collisions has heen
investigated in [27].

Electron-nucleus (ed) deeply inelastic scattering has been recently sumnmarized
in [28]. Some implications of the Colour Glass Conclensate for the central region
of p+ A collisions have been explored in Refs. [29, 30].

Instantons in the saturation environment have been considered in Ref. [31].
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2 The classical effective theory

With this section, we start the study of an effective theory for the small x
component of the hadron wavefunction [3, 10, 32, 33, 34, 35, 36, 37] (see also
the previous review papers [12, 38]). Motivated by the physical arguments
exposed before, in particular, by the separation of scales between fast partons
and soft (i.e.. small-x) gluons, in the infinite momentum frame, this effective
theory admits a rigourous derivation from QCD, to be described in Sect. 3.
Here, we shall rather rely on simple kinematical considerations to motivate its
general structure.

2.1 A stochastic Yang-Mills theory

In brief, the effective theory is a classical Yang-Mills theory with a random
colour source which has only a “plus” component ! :

(D, F"") (1) = 6" pu(x). (2.1)

The classical gauge fields A¥ represent the soft gluons in the hadron wavefunc-
tion, i.e., the gluons with small longitudinal momenta (k* = xP* with x « 1).
For these gluons, the classical approximation should be appropriate since they
are in a multiparticle state with large occupation nubers.

The fast partons, with momenta p™ > k¥, are not dynamical fields auyvlonger,
but they have been rather replaced by the colour current J# = d#%p, which acts
as a source for the soft gluon fields. This is quite intuitive: the soft gluons in
the hadron wavefunction are radiated by typically fast partons, via the parton
cascades shown in Fig. 10. Tt is in fact well known that. for the tree-level
radiative process shown in Fig. 10.a. classical and gquantum calculations give
identical results in the limit where the emitted gluon is soft [1]. What is less
obvious, but will be demonstrated by the analysis in Sect. 3, is that quantum
corrections like those displayed in Fig. 10.b do not invalidate this classical
description, but simply renormalize the properties of the classical source, in
particular, its correlations.

The gross properties of this source follow from kinematics. The fast partons
move along the z axis at nearly the speed of light. They can emit, or absorb,
soft gluons, but in a first approximation they preserve straightline trajectories
along the light-cone (z = ). In terms of LC coordinates, thev propagate in
the positive a7 direction, while sitting at «~ = 0. Their colour current is
proportional to their velocity, which implies J# = §#*p,, with a charge density
pao(x) which is localized near «~™ = 0. More precisely, as quantum fields, the
fast partons are truly delocalized over a longitudinal distance Az~ ~ 1/pt, as
required by the uncertainty principle. But since 1/pt < L/AF, they still look as
sharply localized when “seen” by the soft gluons, which have long wavelengths
and therefore a poor longitudinal resolution.

IWritten as it stands, eq. (2.1) is correct ouly for field confipurations having A~ = 0; when
A~ 0, the source p in its r.h.s. gets rotated by Wilson lines built from A~ {37].
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Figure 10: a) Soft gluon emission by a fast parton; b) a gluon cascade.

The separation of scales in longitudinal momenta implies a corresponding sep-
aration in time: Softer partons have larger energies, and therefore shorter life-
times. Cousider indeed the radiative process in Fig. 10.a, where k1 <« p*. This
is a virtual excitation whose lifetime (in units of LC' time x%) can be estimated
from the uncertainty principle as
Art = — -~ L & . {
Ep—k + 1 —Ep £ P

I._A
[Ne]
i

n

This is small as compared to the typical time scale 1/g, for the dynamics of the
fast partons. [In eq. (2.2), g, = p7 /2p* is the LC energy of the on-shell gluon
with momentum j = (p*,p1), and we have used the fact that, for kT « p*
and comparable transverse momenta ky and p), er 2> £,,8,-.] Thus, the
“fast” degrees of freedom are effectively frozen over the short lifetime of the soft
gluon, and can be described by a time-independent (i.c., independent of )
colour source p,(x~.21).

Still, this colour source is eventually changing over the larger time scale 1/z,.
Thus, if another soft gluon is emitted after a time interval & 1/e,,, it will “see” a
different. configuration of p, without quantum interference between the different
configurations. This can be any of the configurations allowed by the dynamics of
the fast partons. We are thus led to treat p,(c 7, 21) as a classical random vari-
able (Lere, a field variable), with some probability density, or weight function,
Wi+ [p]. which is a functional of p.

As suggested by its notation, the weight function depends upon the soft scale
E* at which we measure correlations. Indeed, as we shall see in Sect. 3, W+ |p]
is obtained by integrating out degrees of freedom with longitudinal momenta
larger than k+. It turns out that it is more convenient fo use the 7'a;m'ci‘it;z/2

r=In(PY/kT) = In(1/x) (2.3)

23¢rictly speaking, this is the rapidity diyfference between the small-x gluon and the hadron,
as defined previously in eq. (1.9). But this difference is the relevant quantity for what follows,
so from now on it will be simply referred to as “the rapidity”. for brevity.
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to indicate this dependence, and thus write W, [p| = Wi [pl.

To deal with field variables and functionals of them, it is convenient to consider
a discretized (or lattice) version of the 3-dimensional configuration space, with
lattice points (r7,x ). (We use the same notations for discrete and continu-
ous coordinates, to avoid a proliferation of symbols.) A configuration of the
colour source is specified by giving its values p®(x~ .1 ) at the N lattice points.
The functional Wr|p| is a (real) function of these N values. Tu have a mean-
ingful probabilistic interpretation, this function must be positive semi-definite
(W-p] = 0 for any p), and normalized to unity:

[ Dlot ool = 1, (2.4)
with the following functional measure:

Dip) = HHH dp*{x™,x0). (2.5)

Gluon correlation functions at the soft scale AT = xPt = Pte™7 are obtained

by first solving the classical equations of motion (2.1) and then averaging the
solution over p with the weight function Wr[p] (below ¥ = (@7, 11)) :

(AL (@t DA ), = / Dlp] Welp] Ag(D)AL(G) -+ (2.6)

where A, = Al[p| is the solution to the classical Yang-Mills equations with
static source p,, and is itself independent of time (c¢f. Sect. 2.3 below). Note
that only equal-time correlators can be computed in this way; but these are
precisely the correlators that are measured by a small-x external probe, which
is absorbed almost instantaneously by the hadron (ef. eq. (2.2)).

The formula (2.6) is readily extended to any operator which can be related to p.
To guarantee that only the physical, gauge-invariant, operators acquire a non-
vanishing expectation value, we shall require 1. [p] to be gauge-invariant. In
practical calculations, one generally has to fix a gauge, so the gauge svmmetry
of W, [p] may not be always manifest.

To summarize, the effective theory is defined by eqs. (2.1) and (2.6) together
with the (so far, unspecified) weight function W |p]. In what follows, we shall
devote much effort to derive this theory from QCD, and construct the weight
function W75 [p] in the process (in Sects. 3-5). But before doing that, let us gain
more experience with the classical theory by solving the equations of motion
(2.1) {in Sect. 2.3), and then using the result to compute the gluon distribution
of a large nucleus (in Sect. 2.4). In performing these calculations, we shall need
a more precise definition of the gluon distribution function and, more generally,
of the relevant physical observables, so we start by discussing that.

2.2 Some useful observables

In subsequent applications of the effective theory, we shall mainly focus on
two observables which, because of their physical content and of the specitic
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structure of the effective theory, are particularly suggestive for studies of non-
linear phenomena like saturation. These observables, that we introduce now,
are the gluon distribution function and the cross-section for the scattering of a
“colour dipole™ off the hadron.

2.2.1 The gluon distribution function

We denote by G(x, Q?)dx the number of gluons in the hadron wavefunction
having longitudinal momenta between xP¥ and (x + dx)PT, and a transverse
size Axy ~ 1/Q . In other terms. the gluon distribution xG(x, Q%) is the number
of gluons with transverse momenta k; 5 ¢ per unit rapidity :

a

@ IN
e O — 27, g4 ¢
xG(x, Q%) = / d L, k ARF s ps
= /(l"‘A: O(Q* — k3 ) xd(x — k¥ /PT) 15{\7’ (2.7)
. dvk

where k = (k*, k) ) and

AN dN

=T = e 2.8
d*k dktd2hy (2.8)

is the Fock space gluon density, i.e., the number of gluons per unit of volume in
momentum space. The difficulty is, however, that this nwnber depends upon
the gauge, so in general it is not a physical observables. Still, as we shall shortly
argue, this quantity can be given a gauge-invariant meaning when computed in
the light-cone (LC) gauge

A = 0. (2.9)

(We define the light-cone components of A in the standard way, as A¥ =
(AY £ A%)//2.) In this gauge, the equations of motion®

D, F" =1, (2.10)
imply for the 4 component
D;F* 4 DYE~T =0, (2.11)
which allows one to compute A7 in terms of 4" ax

1

- rot 4% 919
AT = —('T)HD av A, (2.12)
This equation says that we can express the longitudinal field in terms of the

transverse degrees of freedom which are specified by the transverse felds entirely

3For the purposes of LC quantization we use the equations of motion without sources; that
iz, we consider real QCD. and not the effective theory (2.1).
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and explicitly. These degrees of freedom correspond to the two polarization
states of the gluons. The quantization of these degrees of freedom proceeds by
writing [39]:

: 731 _ - =, -
Al(et, X)) = / (7731‘——277 (e’l’”’a.;.(.z-”f,k) e HF T k.)) (2.13)
ket veltymah

(Z-k=x kT —xy -k, ) with the creation and annihilation operators satistying
the following commutation relation at equal LC' time 7 :

[al(aT, k), alt (e F, Q)] = 696 2kt (2m)3 63 (k= ¢). (2.14)

In terms of these Fock space operators, the gluon density is computed as:

IN o 2kt e -
:—,él— = {ad(a* k) al(at k) = (2}7})3 (Al(xr ) ALt =k), (2.15)

where the average is over the hadron wavefunction. By homogeneity in time, this
equal-time average is independent of the coordinate x¥, which will be therefore
omitted in what follows. By inserting this into eq. (2.7) and using the fact that,
in the LC-gauge, F/* (k) = ikt Al (k), one obtains (with At = xP¥):

9 1l [Pk o R - o
xG(x, Q%) = ;/ 227"; o(Q* -Lzl)<E;§+(1;)P;,+(—l.f)>. (2.16)

As anticipated, this does not look gauge invariant. In coordinate space:
F(f'*‘(l.?)F;'*(——l:) = /(_[:‘JT/(_'l:{(l/p"“—:_ﬁ)'l‘: EIH(F FI (2.17)

involves the electric fields* at different spatial points & and §. A manifestly
gauge invariant operator can be constructed by appropriately inserting Wilson
lines. Specifically, in some arbitrary gauge, we define

O,(F,) = Tt {F™*(¥) U, (7.) FH(§) Uy (7,7) ) (2.18)

where (with 4, = (AF. AT, A=A,17
U (7,) = Pe;‘xp{ig / (;i:?-j(.?)}. (2.19)

and v is an arbitrary oriented path from % to . The (omitted) temporal coor-
dinates 2™ are the same for all fields. For any path . the operator in eq. {2.18)
is gauge-invariant, since the chain of operators there makes a closed loop.

We now show that, by appropriately chosing the path, the gauge, and the bound-
ary conditions, the gauge-invariant operator (2.18) can be made to coincide with

AThe component Fit = -9t 47 is usually referred to as the (LCY) “electric field” by analogv
with the standard electric field B} = F¥ = —3" A% (in the temporal gauge A = 0).
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Figure 11: The path v used for the evaluation of the gauge-invariant operator
(2.18).

the simple 2-point function (2.17). Specifically, consider the path shown in Fig.
11, with the the following three elements: two “horizontal” pieces going along
the =~ axis from (y~.wvL) to (—oc,yy), and, respectively, from (—oc, ) to
(x7,x1), and a “vertical” piece from (—20,y1) to (—20,2). Along the hori-
zontal pieces, dz’'- A =dz" A%, so these pieces do not matter in the LC gauge.
Along the vertical piece, dZ- A=dz 1Ay (=6, 21 ), and the path v between
and 2 is still arbitrary. But the contribution of any such a path to the Wilson
line vanishes once we impose the following, “retarded”, boundarv condition:
Allr) — 0 as 17 — —o. (2.20)
(Note that the “retardation™ property refers hiere to 7, and not to time.)
To sumumarize, for the particular class of paths mentioned above, in the LC
gauge AT = 0, and with the boundary condition (2.20), I, (¥,7) — 1, and the
manifestly gauge-invariant operator in eq. (2.18) reduces to the simpler operator
(2.17) which defines the number of gluons in this gauge. Converserly. the latter
quantity has a gauge-invariant meaning, as the expression of a gauge-invariant
operator in a specific gauge.
We shall need later also the gluon distribution function in the transverse pliase-
space (in short. the “gluon density”), i.e., the munber of gluons per unit rapidity
per unit transverse momentuin per unit transverse area:

3 BN A xGx, k) ,
No(ki b)) = A S TR 2.91
Nr(Frs b1 drd?k, d2h, &2k d2h, (2:21)

where 7 = In(1/x) = ln(Pt/k%) and by is the impact parameter in the trans-
verse plane (Le., the central coordinate by = (w3 + yi)/2 in eq. (2.17)). This
phase-space distribution is a meaningful quantity since the typical transverse
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momenta we consider are relatively large,

2
ki

Abep ~ 1/R?, (

o
b
15

so that the transverse de Broglie wavelengths ~ 1/k; of the partons under
consideration are wuch shorter than the typical scale of transverse variation
in the hadron, 1/Agep. (In particular, this explains why we can consider the
hadron to have a well defined transverse size R.)

In fact, for simplicity, we shall mostly consider a hadron which is homogeneous
in the transverse plane, with a sharp boundary at radial distance R. Then, the
density (2.21) is independent of 0, (within the disk b, < R), and reads (cf.
eq. (2.16)) :

1 BN _ 1 (
TR2 drd?l; — A#xtR2

Nop(kr) = FrE(R)F(=R)). (2.23)

2.2.2 The dipole-hadron cross-section

Consider high energy deep inelastic scattering (DIS) in a special frame — the
“dipole frame” — in which the virtual photon v* is moving very fast, say, in the
negative z direction, but most of the total energy is still carried by the hadron,
which moves nearly at the speed of light in the positive z direction. Thus, the
rapidity gap between the hadron and the virtual photou is

T = Yhadron — ¥+ with I.V',‘ & Yhadron - (2.24)

(As in Sect. 1.4, 7 = In(1/x) = In(s/Q?), where Q? is the virtuality of v* and
s is the invariant energy squared. Note also that y,- < 0, since " is a left
mover.)

The dipole frame is special in two respects [14] (and references therein):

i) The DIS looks like a two step process, in which 4* fHluctuates first into a
quark—antiquark pair, which then scatters otf the hadron. The ¢§ pair is in a
colour singlet state, so it forms a colour dipole.

ii) The essential of the quantum evolution is put in the hadron wavefunction,
which carries most of the energy. The dipole wavefunction, on the other hand,
iz simple and given by lowest order perturbation theory. More precisely, if
oglyy+| € 1, then the dipole is just a quark—antiquark pair, without additional
gluons.

Thus, in this frame, all the non-trivial dynamics is in the dipole-hadron scat-
tering. Because of the high energy of the ¢F pair, this scattering can be treated
in the eikonal approximation [40, 41, 42, 44] : the quark (and the antiquark)
follows a straight line trajectory with z = - ¢ (or o+ = 0), and the effect of
its interactions with the colour field of the hadronic target is contained in the
Wilson line:

Vi(ry) = Pexp ('ig/‘ ([::,?—A:'(.I.t_,;lg_)t”). (2.25)

>
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where x, is the transverse coordinate of the quark, t*’s are the generators of the
colour group in the fundamental representation, and the symbol P deunotes the
ordering of the colour matrices A*(F) = A7 (¥)t* in the expouent from right to
left in increasing order of their = arguments. Note that A™ iz the projection
of A" along the trajectory of the fermion. For an antiquark with transverse
coordinate y; the corresponding gauge factor is V(y, ). Clearly, we adopt here
a gauge where 4% # 0 (e.g.. the covariant gauge to be discussed at length in
Sect. 2.3).

It can then be shown that the S-matrix element for the dipole-hadron scattering
is obtained by averaging the total gauge factor tr(V1(x) )V (y1)) (the colour
trace occurs since we consider a colourless ¢@ state) over all the colour field
configurations in the hadron wavefunction:

Sr(er) = = (& 0V L)) - (2.26)

/T
The dipole frame is like the hadron infinite momentum frame i that vpgegeon =
7, cf. eq. (2.24). so the average in eq. (2.26) can be computed within the effective
theory of Sect. 2.1, that is, like in eq. (2.6).

The dipole-hadron cross section for a dipole of size ) = v —yy is obtained by
integrating 2(1 — S (1, y1)) over all thé impact parameters by = (wy +y1)/2:

2 1 T/ i% s 230 rd
Tdipole(T,T1L) = 2/61“(& E<t1‘<l — Vi)V (f@/L))>_- (2.27)

7

Finally, the v*—hadron cross-section is obtained by convoluting the dipole cross-
section (2.27) with the probability that the incoming photon splits into a ¢ pair:

.1 .
oy n(T. QY = / dz / Ay | U2, r 15 QDN Caipote (To71). (2.28)
JO .

Here, W(z,71;Q?) is the light-cone wavefunction for a photon splitting into a
qq pair with transverse size ry and a fraction = of the photon’s longitudinal
momentum carried by the quark [40. 41].

2.3 The classical colour field

From the point of view of the effective theory, the high density regime at small
x is characterized by strong classical colour fields, whose non-linear dynamics
must be treated exactly. Indeed, we shall soon discover that. at saturation,
XG(x, Q%) ~ 1/ag, which via egs. (2.16) and (2.6) implies classical fields with
amplitudes A" ~ 1/g. Such strong fields cannot be expanded out from the
covariant derivative D' = ¢ — igA®. Thus, we need the exact solution to the
clagsical equations of motion (2.1), that we shall now construct.
We note first that, for a large class of gauges, it is consistent to look for solutions
having the following properties:

Fl7 =, A7 =0, At AL statice, (2.29)

a
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where “static” means independent of %, (In fact, once such a static solution is
found in a given gauge, then the properties (2.29) will be preserved by any time-
independent gauge transformation.) This follows from the specific structure of
the colour source which has just a “+” component, and is static. For instance,
the component g =i of eq. (2.1) reads:

0= D,F" = D, + D,F* 4 D_F~ (2.30)

But Dy = D™ = 07 — igA~ vanishes by eq. (2.29), and so does F~%. Thus
eq. (2.30) reduces to D; F7' = 0, which implies F¥ = 0, as indicated in eq. (2.29).
This further implies that the transverse fields A' form a two-dimensional pure
gauge. That is, there exiats a gauge rotation U(c™,ry) € SU(N) such that (in
matrix notations appropriate for the adjoint representation: A" = A1 7%, ete) :
A=, wy) = (%U(.It‘..u_)()"(”L(.r‘,.rl). (2.31)
Thus, the requirements (2.29) leave just two independent field degrees of free-
dom, A*(F) and U(T), which are further reduced to one (either 4% or U/) by
imposing a gauge-fixing condition.
We cousider first the covariant gauge (COV-gauge) J, A% — 0. By eqgs. (2.29)
and (2.31), this implies 0, A" = 0, or U = 0. Thus, in this gauge:

A2y = (e o), (2.32)
with aq(F) linearly related to the colour source g, in the COV-gauge :

Note that we use curly letters to denote solutions to the classical field equations
(as we did already in eq. (2.6)). Besides, we generally use a tilde to indicate
(uantities in the COV-gauge, although we keep the simple notation «, (&) for
the classical field in this gauge, since this quantity will be frequently used.

Eq. (2.33) has the solution :

— N : . ‘l y B A
(293 (lU 3 ‘l'_L) = / l.ily_l_ <;7_‘J_I Vﬂ |Z/_L> P (J.' L)
v Vi
Cdy, ] o N
N _ 5 a7, yL), 2.34
/ 4w (ry —yo)*p? Pal¥500) { )

where the infrared cutoff p is necessary to invert the Laplacean operator in
two dimensions, but it will eventually disappear from {or get replaced by the
confinement scale Agep in) our subsequent formulae.
The only non-trivial field strength is the electric field:

Fri= —i'a,. (2.35)

In terms of the usual electric (E) and magnetic (B) fields, this solution is char-

acterized by purely transverse fields, E, = (E!, E?) and B, = (B, B?), which
are orthogonal to each other: By -B = 0 (since B> = —E” and B* = EY).
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To compute the gluon distribution (2.16), one needs the clagsical solution in
the LC-gauge AT = 0. This is of the form A = A7 with A (7, x1) a
“pure gauge”, cf. eq. (2.31). The gauge rotation U(F) can be obtained by
inserting the Ansatz (2.31) in eq. (2.1) with ¢ = + to deduce an equation for 7.
Alternatively, and simpler. the LC-gauge solution can be obtained by a gauge
rotation of the solution (2.32) in the COV-gange:

A = U (Au + :_']g)/"')[IT, (2.36)

where the gauge rotation U(F) is chosen such that AT — 0, ie..

o = ~ Ut (@Y. (2.

2.37)
g
Eq. (2.37) is easily inverted to give
UT(;r'. r1)=Pexp {'ig / dz~ Cl‘(:_..l.'_L)} . (2.3%)
o

From eq. (2.36), A’ iz obtained indeed in the form (2.31), with U given in
eq. (2.38). The lower limit xy — —oo in the integral over o7 in eq. (2.38)
has been chosen such as to impose the “retarded” boundary condition (2.20).
Furthermore:

FH(E) = 9T A7) = U@EFH@UHE). (2.30)

Together, eqs. (2.31), (2.34) and (2.38) provide an explicit expression for the
LC-gauge solution A? in termns of the colour source p in the COV-gauge. The
corresponding expression in terms of the colour source in the LC-gauge p cannot
be easily obtained: Eq. (2.33) implies indeed

~Via = Ulpl, (2.40)

whicli implicitlv determines ¢ (and thus [7) in terms of p, but which we don’t
know how to solve explicitly. But this is not a difficulty, as we argue now:
Recall indeed that the classical source is just a “dwmwy” variable which is
integrated out in computing correlations according to eq. (2.6). Both the mea-
sure and the weight function in eq. (2.6) are gauge invariant. Thus, one can
compute correlation functions in the LC-gauge by performing a change of vari-
ables p — f, and thus replacing the a priori unknown functionals A‘[p] by the
functionals A*[p], which are known explicitly. In other terms. one can replace
eq. (2.6) by

W DA D e = [ DAWAAGAL - @

where A*[p] is the classical solution in sowme generic gauge (e.g., the LC-gauge).
but expressed as a functional of the colour source p iu the COV-gauge.

24



Moreover, the gauge-invariant observables can be expressed directly in terms of
the gauge fields in the COV-gauge, although the corresponding expressions may
look more complicated than in the LC-gauge. For instance. the operator which
enters the gluon distribution can be written as (cf. eq. (2.39))

Tr {FH(@)FH () = Tr {r_.r(;f)ﬁ“(.f)m(.f) U(HF () U*(m} L (2.42)

where the classical fields are in the LC-gauge in the Lh.s. and in the COV-gauge
in the s, and U and Ut are given by eq. (2.38). Both writings express the
gauge-invariant operator (2.18) (with the path v in Fig. 11) in the indicated
gauges. (Indeed, U, (T, §) = UN(F)U(7) for the COV-gauge field Ar = FHF o)
Note that, while in the LC-gauge the non-linear effects are encoded in the electric
fields F*, in the COV-gauge they are rather encoded in the Wilson lines [7 and
Ut (the corresponding field Ff' = —& e, being linear in 3, ).

Up to this point, the longitudinal structure of the source has been arbitrary:
the solutions written above lhold for any function p®(x~). For what follows,
however, it is useful to recall, from Sect. 2.1, that p has is localized near
x” = 0. More precisely, the quantum analysis in Sect. 3.4 will demonstrate
that the classical source at the longitudinal scale k¥ has support at positive x™,
with 0 < a7 < L/kt. From eqs. (2.33)—(2.34). it is clear that this is also the
longitudinal support of the “Coulomb field” «(7). Thus, integrals over 2~ as
that in eq. (2.38) receive contributions only from a7~ in this limited range. The
resulting longitudinal structure for the classical solution is illustrated in Fig. 12,
and can be approximated as follows:

A ey) = 0(7) L V@V = o)A (), (2.43)
g
FYa@ = ot A = (e ) ALry). (2.44)
It is here understood that the § — — and 8 — —functions of x~ are smeared over

a distance Ar~ ~ 1/k*. In the equations above, I and V1 are the asymptotic
values of the respective gauge rotations as 27 — oo ¢

\»"1(.11) = Pexp{[g / (.I:“(_r(,:"..r_g_)}. (2.45)

In practice, U(x~,ay) = V(xy) for any &~ 2 1/kT. Note that (2.45) is the
same Wilson line as in the discussion of the eikonal approximation in Sect. 2.2.2
(compare to eq. (2.25) there). In the present context, the eikonal approximation
is implicit in the special geometry of the colour source in eq. (2.1}, which is
created by fast moving particles.

2.4 The gluon distribution of the valence quarks

To compute observables in the effective theory, oue still needs an expression for
the weight function 1, |p]. Before discussing the general construction of 1W[p]
in Sect. 3, let us present a simple model for it, due to McLerran-Venugopalan

o
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Figure 12: The longitudinal structure of the colour source p and of the classical
field solution A’ for the effective theory at the scale k¥ . As functions of 27, a
and F** are as localized as p.

(MV) [8], which takes into account the colour charge of the valence quarks
alone. That is, it ignores the quantum evolution of the colour sources with .
This model is expected to work better for a large nucleus, with atomic number
A » 1, indeed, this has wmany valence quarks (A x N,.), and therefore as many
colour sources, which can create a strong colour field already at moderate values
of x, where the quantum evolution can be still neglected. In this model, 7 is
fixed, but one can study the strong field effects (in particular, gluon saturation)
in the limit where A is large. Besides, the MV wmodel provides a reasonable
initial condition for the quantum evolution towards small x, to be described
later.

The main assumption of the MV model is that the 4 »x N, valence ¢quarks can
be treated as independent colour sources. This relies ou confinement. Note first
that confinement plays no role for the dynamics in the transverse plane: Indeed,
we probe the nucleus with large transerse momenta Q° '3 Af)p. that is, over
distance scales much shorter than those where confinement sets in. On the other
hand, even at moderate values of x, we are still probing an integrated version
of the hadron in the longitudinal direction, i.e., we measure all the “partons”
(Lere, valence cquarks) in a tube of transverse area AS; ~ 1/Q? and longitudinal
extent Az~ ~ 1/xP% » 1/P*. The number of valence quarks which are crossed
by this tube,

AN,
Ry

AN =nAS) = AS ~ AV (2.46)
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(with 7 = the number of quarks per unit transverse area, R the radius of a single
nucleon, and R4 = AY3 R the radius of the nucleus) increases with A, but these
quarks are confined within different nucleons, so they are uncorrelated. When
the number of partons AN is large enough, the external probe “sees”™ them as a
classical colour source with a random distribution over the transverse area. The
total colour charge Q® in the tube is the incoherent sum of the colour charges
of the individual partons. Thus,

A : GO NA :
(0% =0, (Q"Q") = ¢*C;AN = As, T—L7 (2.47)
TR,
where we have used the fact that the colour charge squared of a single quark is
g*t* = g2C. One can treat this charge as classical since, when AN is large
enough, we can ignore commutators of charges:

I [Qu1 Qb] l:| l'fu,bL’Q(? & QZ (2.48)

In order to take the continuumn limit (i.e., the limit where the transverse area
AS) of the tube is small®), it is convenient to introduce the colour charge
densities p“(x~.x1) (with the same meaning as in Sect. 2.1) and

prey) = / de” p* (™ ) (2.49)
(the colour charge per unit area in the transverse plane). Then,

0t = / diry p®ry) = / A2y /rl,z'" T, e, (2.50)
Jas, A8y .

and eqs. (2.47) imply (recall that 'y = (N2 —1)/2N,) :

. ) 24
(pale)yiNa = Sapd @ (rL — yu) pa, fta = Z(TIF—R“X .
(o2 yia = SapdP (L —y)d(e” —y7) AalaT),
/(fl;l‘ '/\A({L’_) = [la. (2.51)

Here, pa ~ A3 is the average colour charge squared of the valence quarks per
unit transverse area and per colour, and A4(«™) is the corresponding density
per unit volume. The latter has some dependence upon x7, whose precise
form is, however, not important since the final formulae will involve only the
integrated density p,4. There is no explicit dependence upon x, in g4 or Ag(z7)
since we assume transverse homogeneity within the nuclear disk of radius R4.

5This amounts to increasing @2, so, strictly speaking, at this step one should also include
the DGLAP quantum evolution (i.e., the fact that, with increasing transverse resolution, the
original “quark” is resolved into a set of smaller constituents). The quantium analysis to be
discussed later will include that in the “double-log approximation”; see Sect. §.3.

]
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Finally, the correlations are local in =7 since, as argued before, colour sources
at different values of 2~ belong to different nucleous, so they are uncorrelated.
All the higher-point, connected, correlation functions of p,(¥) are assumed to
vanish. The non-zero correlators (2.51) are generated by the following weight
function (8] :

2 Agqlx)

&

. 1 [ pal@)pald .
Walg] = ./\/exp{—— z /(1-31&5-)”(—”}, (2.52)

which is a Gaussian in p,, with a local kernel. This is gauge-invariant, so the
variable p, in this expression can be the colour source in any gauge. The integral
over ) in eq. (2.52) is effectively cutoff at R 4. By using this weight function,
we shall now compute the observables introduced in Sect. 2.2.

Consider first the gluon distribution in the low density regime, i.e.. when the
atomic number 4 is not too high, so that the corresponding classical field is
weak and can be computed in the linear approximation. By expanding the
general solution (2.31) to linear order in p, or, equivalently, by directly solving
the linearized version of eq. (2.1), one easily obtains:

; llti l)a (lﬂ+, ]1‘_[_) PaeCVER . ]\'i g - ,
Rh) = — = . YR == i pa k), 2.5:
Aq () ht s kY Fa ) }I.fl palk) (2.53)

which together with eq. (2.51) implies:

. — PR ]_ ad bad 5 oA g N FE &y
FEHRFH(R)a = 77 (alB)pa(—F)a = TRE(NZ = DEF . (259)
‘J_ .-L

By inserting this approximation iu eqgs. (2.23) and (2.16). one obtains the fol-
lowing estimates for the gluon densitv and distribution function:

N2 1 _
Na(ky) ~ Ze 2HA : (2.55)
drd kY
. N2 - 1)R? @ gk 0 AN
xGx, Q) =~ M;u/ ('E‘L = L L1 5‘2 .
dm JA e AL T AQ(.’—'D

(with ay = g?/4m). The integral over k in the second line has a logarithmic
infrared divergence which has been cut by hand at the scale Agep since we
know that, because of confinement, there cannot be gluon modes with transverse
wavelengths larger than 1/Agep (see also Ref. 35)).

We recognize in eq. (2.55) the standard bremsstrahlung spectrum of soft “pho-
tons” radiated by fast moving charges [1]. In deriving this result. we have
however neglected the non-Abelian nature of the radiated fields. i.e.. the fact
that they represent gluons, and not photons. This will be corrected in the next
subsection.

2.5 Gluon saturation in a large nucleus

According to eq. (2.55), the gluon density in the transverse phase-space is pro-
portional to A3, and becomes arbitrarily large when A iucreases. This is
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however an artifact of our previous approximations whiclh have neglected the
interactions among the radiated gluons, i.e., the non-linear effects in the clagsi-
cal field equations. To see this, one needs to recompute the gluon distribution
by using the exact. non-linear solution for the classical field, as obtained in Sect.
2.3. This involves the following LC-gauge field-field correlator:

LE#”)-E?’(?))\ = <<U‘l()’(1 ) <(” J'at ) >4, (2.56)
i

which, in view of the non-linear calculation, has been rewritten in terms of
the classical field in the COV-gauge (cf. eq. (2.42)), where FJ' = —i'w,. To
evaluate (2.56), one expands the Wilson lines in powers of «v and then contracts

the « fields in all the possible ways with the following propagator:
(ao(Pap(i)a = (th’s(”_ —y ) va@T e —ya)s

Ya(x™, k1) = =3 /\4( 7). (2.57)
¥l

We have used here g*(x7, k) = kf’,_(.r”‘(.r‘.l.‘ 1), of. eq. (2.34), together with
eq. (2.51) which holds in any gauge and, in particular, in the COV-gauge. The
propagator (2.57) is very singular as ky — 0, but this turns out to he (alost)
harmless for the considerations to follow.
The fact that the fields « are uncorrelated in 2~ greatly simplifies the calculation
of the correlator (2.56). Indeed, this implies that the two COV-gauge electric
fields @ () and @*a.() can be contracted only together, and not with the
other fields o generated when expanding the Wilson lines. That is:

ut oiat) (Ut o = (P RD (D) (UL (B ea
((hoat) (Ulorer) )= (ot ) (el @)
=§(a” -y WU DU (- Viva@ o — ). (2.58)

where we have used U}, = U, in the adjoint representation. Eq. (2.58) can be
proven as follows: i) B\ rotational symmetry, & oT) cannot be contracted with
a field a(z7, x) ) resulting from the expansion of U1(F): indeed:

OC/([/—L —IA - 0.
7y, =0 N

(2m A3

{a(z7, )0 (™, w1)) < O ya(e™ L)

o

ii) Contractions of the type
(27, g )0 (e, )) (a(u™ 2 0) oy~ yL)) ~ 8(x™ —27)5(u™ —y7)

are not allowed by the ordering of the Wilson lines in &~ : «(z7, y1) has been
generated by expanding U1(77), which requires :~ < y~ (and similarly u™ < ™).
Then, the first contraction in (2.59) implies @~ = =~ « y~, while the second
one leads to the contradictory requirement y~ = u~ < v~

The allowed contractions in eq. (2.58) involve:

. 1 . - o
Sale7 a0 ~y1) = 'V’—— (TLC’T(i LUy a, (2.59)
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which is like the S-matrix element (2.26) for the dipole-hadron scattering, but
now for a colour dipole in the adjoint represeutation (i.e., a dipole made of two
gluons). This can be computed by expanding the Wilson lines, performing con-
tractions with the help of e¢. (2.57), and recognizing the result as the expansion
of an ordinary exponential. One thus finds (see also Sect. 5.1 for a more rapid
derivation):

Sale,ry) = GXP{ -.(121\’?[5,—&(1‘_\O_L) —&ale™, 71)3}:
Ealx™,ry) = / dz” v4(z7,rL), (2.60)

where the exponent can be easily understood: It arises as
(4T (@al) = @l ) T (@ F) = el i) (2.61)

where igT%(c,(T) — (7)) is the amplitude for the dipole scattering off the
“Coulomb” field c,, to lowest order in this field (i.e.. the amplitude for a single
scattering). Then, (2.61) is the amplitude times the complex conjugate am-
plitude, that is, the cross section for such a single scattering. This appears
as an exponent in eq. (2.60) since this equation resums multiple scatterings to
all orders, and, in the eikonal approximation, the all-order result is simply the
exponential of the lowest order result. Since, moreover. «, is the field created
by the colour sources in the hadron (here, the valence quarks), we deduce that
eq. (2.60) describes the multiple scattering of the colour dipole off these colour
sOUrces.

If the field o, is slowly varying over the transverse size r; = wy — yi of the
dipole (“small dipole”), one can expand

GT (o (T) — o () = —gT (2" = ¥y )P aa(T) = gT* (2" — ;(/’);/:',j'i(.i?), (2.62)

and then eq. (2.61) involves the correlator of two (COV-gauge) electric fields.
This is indeed the case, at it can be seen by an analysis of the exponent in
eq. (2.60) :

_ - o d*k 1 ey oy
Elem 0 = ale ) = gale”) [ [t
pale™)y = / dz"Aa(z7). (2.63)

The above integral over k) is dominated by soft momenta, and has even a
logarithmic divergence which reflects the lack of confinement in our model (see
also [35]). Note, however, that the dominant. quadratic. infrared divergence
~ [(d®k1 /k?), which would characterize the scattering of a coloured particle (a
single gluon) off the hadronic field®, has cancelled between the two components

8Such a divergence would oceur in (U f{ 2)).4, which describes the scattering of a single
gluon.
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of the colourless dipole. The remaining, logarithmic, divergence can be cut off
by hand, by introducing an infrared cutoff Age:p. Then one can expand:

1/7%

L. .
. ]_2]\.{ 1— ‘VIATJ_“I'J_ [.&]\ 1 (k- r V2 et )
/(g J(_) P‘i =~ (9 —L>_4—( —L‘i—L) 2‘-,%]11%7,——. (.;’(.)4)
(2m)? Fy J o (2m)* Iy 2 LWom — r{ Adyep

(This is valid to leading logarithunic accuracy, since the terms neglected in this
way are not enhanced by a large fransverse logarithm.) We thus obtain:

v N, o
(2.65)

Sa(x™,ry) = exp] — S0H pale™) In

LAO(* n

which together with eq. (2.58) can be used to finally evaluate the gluon density
(2.23). This requires a double Fourier transform (to k1 and k1), as shown
in eq. (2.17). The presence of the d-function in eq. (2.58) wakes the Fourier
transform to k% trivial, and one gets:

NZ -1 o i e o 0
./\/A(Iﬂ_l_)z—3 drpem e Lde T Sq (T e )=V valeT o)),

4
{2.66)
where (cf. eqs. (2.57) and (2.63)) :
o _ [ d%py efPra 1 1 Opeg(™)
—Viqya(r™,ry) = Aq{x )/.( ,.~—.,——=——11 - .
274l + A NPT SE P dr i Ay OaT
(2.67)

The non-linear effects in eq. (2.66) are encoded in the quantity Saq(xr=,r1),
which finds its origin in the gauge rotations in the rhs. of eq. (2.56). In
fact, by replacing S4{x7,r1) — 1 in eq. (2.66). one would recover the linear
approximation of eq. (2. ”5) To perform the integral over v~ in eq. (2.606),
we note that the quantity (2.67) is essentially the derivative wart. x~ of the
exponent in Sq(x=,r)), eq. (2.65). Therefore:

. (2.68)

. — — 1,202
N2_1 7. . 1—exp 1r1@% In —w—v—\,
. ) — o J 1
du', e ll.l ry e

R LK Y

Ny

Na(ky) =

where

il

Q%\ @ Nppig = asNg /11‘1:_)\,4(,1‘_) ~ AV (2.69)
Eq. (2.68) is the complet result for the gluon density of a large nucleus in the
MV model [33, 34]. To study its dependence upon by, one must still perform
the Fourier transform, but the result can be easily anticipated:

i) At high momenta k; 3 @4, the integral is dominated by small distances
ry < 1/Q .4, and can be evaluated by expanding out the exponential. To lowest
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non-trivial order (which corresponds to the linear approximation), one obtains
the bremsstrahlung spectrum of eq. (2.55):
1 Q% 1A . . e s
Nalky) o0 —— 22 = 2 for kg e Q4. (2.70)
asNe ki o

it) At small momenta, k) <« @4, the dominant contribution comes from large
distances 71 3 1/Q4, where one can simply neglect the exponential in the

numerator and recognize 1/r4 as the Fourier transform? of In k% :
72 2
ONE-1 1 04

A - Qi
Naths) = == s

There are two fundamental differences between eqs. (2.70) and (2.71), which
refer both to a saturation of the increase of the gluon density: either with 1/k7
{at fixed atomic number 4), or with A (at fived transverse momentum A, ). In
both cases, this saturation is only marginal : in the low-k, regime, eq. (2.71),
the gluon density keeps increasing with 1/k7 . and also with 4, but this increase
is only logarithinic, in contrast to the strong, power-like, increase o (AY*/4%)
in the high—k, regime, eq. (2.70).

Moreover, the gluon density at low k. is of order 1/, which is the maximum
density allowed by the repulsive interactions between the strong colour fields
At = /(AT AY) ~ 1/¢g. When increasing the atomic number A, the new gluons
are produced preponderently at large transverse momenta = (4, where this
repulsion is less important. This is illustrated in Fig. 13.

To be more precise, the true scale which separates between the two regimes
(2.70) and (2.71) is not Q 4, but rather the saturation momentum (,(A) which
is the reciprocal of the distance 1/r) where the exponent in eq. (2.68) becomes
of order one. Thus, this is defined as the solution to the following equation:

Y 1 DZ(A ) .
Qi(A) = = Nopus In M (2.72)
’ 4 AéCD

To clarify its plysical interpretation. note that, at short-distances ri <€ 1/Q 4,

5 A2 X = =
1 Adep (NZ - 1)wR%

14 In

is the munber of gluons (of each colour) having tranverse size ») per unit of
transverse area (cf. eq. (2.55)). Since each such a gluou carries o colour charge
squared (¢T%)(¢T%) = g° N, we deduce that
asN;pra In 5= (2.74)
r1AGep
TThe saturation scale provides the ultraviolet cutotf for the logarithm in eq. (2.71) since
the short distances ry < 1/Q 4 ave cut off by the exponential in eq. (2.65).
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Figure 13: "The gluon phase-space density Ma(k1) of a large nucleus (as ce-
scribed by the MV model) plotted as a function of & .

is the average colour charge squared of the gluons having tranverse size v per
unit area and per colour. Then, eq. (2.72) is the condition that the total colour
charge squared within the area occupied by each gluon is of order one. This is
the original criterion of saturation by Gribov, Levin and Ryskin [6]. for which
the MV model offers an explicit realization.

To conclude this discussion of the MV model, note that, in the previous compu-
tation, we have also obtained the S-matrix element 94 (r ) for the dipole-hadron
scattering (cf. Sect. 2.2.2). This is given by eq. (2.65) with p4(r™) — pa and
Ne = T replaced in general by the colour Casimir #4¢ for the representation
of interest (e.g., C'y = (N2 — 1)/2N, for the fundamental representation). As
discussed after eq. (2.61), this describes the multiple scattering of the colour
dipole on the colour field in the hadron (here, the field of the valence quarks).
According to eq. (2.65), one can distinguish. here too, between a short-distance
and a large-distance regime, which moreover are separated by the same “satu-
ration scale” as for the gluon distribution:

i) A small-size dipole 3 < 1/Q, is only weakly interacting with the hadron:

1 ‘ L _ L N
1—84(rL) = zr_{cgj In———  for 7. < 1/Q4(A), (2.75)
LNELYsTely)

a phenomenon usually referred to as “colour transparency”.
ii) A relatively large dipole, with 1) > 1/Q., is strongly absorbed:

Sa(ry) =0 for 1y o 1/Q(A), (2.76)
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a situation commonly referred to as the “black disk™, or “unitarity”, limit.
The remarkable fact that the critical dipole size is set by the saturation scale
s can be understood as follows: A small dipole — small as compared to the
typical variation scale of the external Coulomb fHeld — couples to the associated
electric field F+ (of. eq. (2.62)), so its cross-section for one scattering, eq. (2.61),
is proportional to the uumber of gluons (f' TFY within the transverse area
/i explored by the dipole. This is manifest on eq. (2.65), whose exponent is
precisely the colour charge squared of the gluons within that area {cf. the remark
after eq. (2.74)). At saturation, this charge becomes of order one, and the dipole
is strongly interacting. The lmportant lesson is that the unitarity limit (2.76)
for the scattering of a small dipole on a high energy hadron is equivalent to
ghion saturation in the hadron wavefunction [40, 9, 10, 45, 14].

3  Quantum evolution and
the Colour Glass Condensate

In this section, we show that the classical Yang-Mills theory deseribed in Sect.
2 can be actually derived from QCD as an effective theory at small x. This
requires integrating out quantum fluctuations in layers of pt. which can be
done with the help of a renormalization group equation (RGE) for the weight
function W,.[p]. We shall not present all the calculations leading to this RGE;
this would require heavy techuical developments going far beyond the purpose
of these lectures. (See Ref. [37] for more details.) Rather, we shall emphasize
the general strategy of this construction and the physical picture behind it (that
of the colour glass), together with those elements of the calculation which are
important to understand the structure of the final equation.

3.1 The BFKIL cascade

In Sect. 2.1, we have argued that the radiation of a soft gluon by a fast parton
via the tree-level graph shown in Fig. 10.a can be described as a classical
process with a colour source whose structure is largerly fixed by the kinematics.
Our main goal in this section will be to show that this picture is not spoilt
by quantum corrections. We start by showing that the dominant quantum
corrections, those which will be resummed in what follows, preserve indeed the
separation of scales which lies at the basis of the effective theory developed in
Sect. 2.

Consider first the lowest-order radiative correction to the tree-level graph in
Fig. 10.a, namely, the emission of one additional {quantum) gluon, as shown
in Fig. 14.a. At the sawe level of accuracy, one should include also the vertex
and self-energy corrections lustrated in Fig. 14.h, ¢. This will be done in the
complete calculation presented in Sect. 3.4. But in order to get a simple order-
of-magnitude estimate for the quantum corrections — which is our purpose in
this subsection — it is enough to consider the raciative process in Fig. 14.a.
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a) b) c)
Figure 14: Lowest-order quantuin corrections to the emission of a soft gluon by

a fast parton: a) a real-gluon emission; b} a vertex correction; ¢) a self-energy
correction.

The probability for the emission of a quantum gluon with longitudinal momen-
tum p{ in the range p* > pf > kT is

3
i w N, [P dpt s IV y” 1
AP x al¥e / b SLUAL In P yln~. (3.1)
L p-ll— T kTt X

This becomes large when the available interval of rapidity A7 = In(1/x) is large.
This is the typical kind of quantui correction that we would like to resum here.
A caleulation which includes effects of order (e, In(1/x))" to all orders in n is
said to be valid to “leading logarithmic accuracy™ (LLA).

The typical contributions to the logarithmic integration in eq. (3.1) come from
modes with momenta pf deeply inside the strip: p* » pf > k%, Thus, in
Fig. 14.a, the soft final gluon with momentum A7 is emitted typically from a
relatively fast gluon, with momentum pf > k. This latter gluon can therefore
be seen as a component of the effective colour source at the soft scale &+, In
other terms, one can visualise the combined effect of the tree-level process, Fig.
10.a, and the first-order radiative correction, Fig. 14.a, as the generation of a
modified colour source at the scale k¥, which receives contributions only from
the modes with longitudinal momenta much larger than &¥. This is illustrated
in Fig. 15.

pt pt

k+

k+

Figure 15: Effective colour source after including the lowest-order radiative
correction.

Clearly, when x is small enough, In(1/x) ~ 1/, the “correction” (3.1) becomes
of O(1), and it is highly probable that more gluons will be emitted along the
way. This gives birth to the gluon cascade depicted in Fig. 10.h, whose domi-
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nant contribution, for a fixed number of “rungs” N, is of order (o, In(l /J'))’\".
and comes from the kinematical domain where the longitudinal momenta are
strongly ordered:

D =p[§' P p{" e p._‘,f' S T [‘)j{, =kt (3.2)

(Other momentum orderings give contributions which are suppressed by, at
least, one factor of 1/In(1/x), and thus can be neglected to LLA.) With this
ordering, this is the famous BFKL cascade, that we would like to include in our
effective source. This should be possible since the hierarchy of scales in eq. (3.2)
is indeed consistent with the kinematical assumptions in Sect. 2.

Note first that, the strong ordering (3.2) in longitudinal momenta implies a
corresponding ordering in the lifetimes of the emitted gluons (cf. eq. (2.2)):

Alta' > A;L'Il' > Axd o o Azj‘\‘ (3.3)

Because of this, any newly emitted gluon lves too shortly to notice the dynamics
of the gluons above it. This is true in particular for the last emitted ghion, with
momentum k¥, which “sees” the N previous gluons in the cascade as a frozen
colour charge distribution, with an average colour charge Q = /(Q,Q,) ~ N.
Thus, this (NV-+1)th gluon is emitted coherently off the colour charge fluctuations
of the N previous ones, with a differential probability (compare to eq. (3.1)) :

o N,

dPyn x N(7)dr. (3.4)

s

When iucreasing the rapidity by one more step, 7 — 7 + dr. the number of
radiated gluons changes according to

N{t+dr) = (1+ N(r}dPyn + N(7){1 — dFn). (3.5)
which together with eq. (3.4) implies (with &, = V. /7)

v )2 dN y & o
xG(x, Q7)) = —— ~ Cloet™T. (3.6)
dr

Thus, the gluon distribution grows exponentially with 7 = lu(l/x). A woare
refined treatment, using the BFKL equation, gives » = 41n2, and shows that
the prefactor C' in the r.hs. of eq. (3.6} has actually a weak dependence on 7:
C o (agT)™H2 [3, 4).
Thus, the BFKL picture is that of an unstable growth of the colour charge
fluctuations as x becomes smaller and smaller. However, this evolution assumes
the radiated gluons to behave as free particles, so it ceases to he valid at very
low x, where the gluon density becomes so large that their mutual interactions
cannot be neglected anyvlonger. This happens. tvpicallv, when the interaction
probability for the radiated gluons becomes of order one, cf. eq. (1.12), which
is also the criterion for the saturation effects to be hmportant (compare in this
respect eq. (1.12) and eqs. (2.72)—(2.73)). Thus one cannot study saturation
consistently without including now-linear effects in the quantum evolution. It is
our main objective in what follows to explain how to do that.



3.2 The quantum effective theory

To the accuracy of interest, quantum corrections can be incorporated in the
effective theory by renormalizing the source p, and its correlation functions
(i.e., the weight function TW;[p]). The argument proceeds by induction: We
assume the effective theory to exist at some scale AT and show that it can be
extended at the lower scale DAT <« AT, Specifically:

I} We assume that a guantum effective theory exists at some original scale AT
with A+ « P*. That is, we assume thas the fust quantum modes with momenta
pt 3> AT can be replaced, as far as their effects on the correlation functions
at the scale AT are concerned, by a classical random source p, with weight
function Wix [p] (We shall eventually convert AT into the rapidity 7 by using
T =In(PT/AT). On the other hand, the soft gluons, with momenta pt < A™.
are still exphmtely present in the theory, as quantum gauge fields. Thus, this
effective theory includes both the classical field 4'[p] generated by p, and the
soft quantum gluons.

Within this theory, the correlation functions of the soft (AT < AT) fields are
obtained as (e.g., for the 2-point function)

g AF o 4+) 4m ” (514, ol
(rara @) = [ Dpwp) | L DAL A S
, Jx D“—lfs(.‘l+) elhl:\,{)} I

(3.7
where T stays for time ordering (i.e. ordering in z%). This is written in the

LC-gauge AF = 0, and involves two functional integrals:
a) a quantumn path integral over the soft gluon fields A# at fixed p:

Y DA Ar ()4 () e ST

(TA» (1) A" (1), = (3.8)
' M DAS(AT) e 5140 0)
b) a classical average over p, like in eq. (2.6) :
(TA* () AV (y)) = /’Dpﬂ"\_}[/)] (TA*COA (), - (3.9)

The upper script “A™*” on the quantum path integral is to recall the restriction
to soft (|[pT| < AT) longitudinal momenta®. The action S[4, p] is chosen such as
to generate the classical field equations (2.1) in the saddle point approximation
85/8.A#* = 0. This requirement, together with gauge symuetry and the eikonal
approximation. single out the following action |36]

S[A, ] = /dﬂ—F;;,,Fﬂ" W/d‘ '11{ YW [AT(F } (3.10)

3The separation between fast and soft degrees of freedom according to their longitudi-
nal momenta has a gauge-invariant meaning (within the LC-gauge) since the residual gauge
transformations, being independent of r~, cannot change the p™ momenta.

37



where W[A™] is a Wilson line in the temporal direction:
WA™|F =T (—.'xp{zig / (i.l‘+44-(.l‘)}. (3.11)

With this action, the condition dS/dA* = 0 implies indeed eq. (2.1) for field
configurations having A7 = 0. Thus, the classical solution A# = §# A! [p] found
in Sect. 2.3 i3 the tree-level field in the present quantum theory.

As long as we are interested in correlation functions at the scale A*, or slightly
below it, we can satisfy ourselves with this classical (or saddle point) approxima-
tion. That is, to the accuracy to which holds the effective theory in eq. (3.7), the
gluon correlations at the scale At can be computed fromn the classical field solu-
tion, as in eq. (2.6). But quantum corrections become important when we con-
sider correlations at a much softer scale k™ <« AT, such that o, (At /EF) ~ 1.

IT) Within the quantum effective theory, we integrate out the semi-fast quantum
fluctuations, i.e., the fields with longitudinal momenta inside the strip:

DAY < |pt| <« AT, with b1l and . In(1/b) < L. (3.12)

This generates quantum corrections to the correlation functions at the softer
scale bAT, which can be computed by decomposing the total gluon field as
follows:

AR = AMp| + at + dAR. (3.13)

Here, A# is the tree-level field, af* are the semi-fast fluctuations to be integrated
out, and dA# are the soft modes with momenta |[p*| < DA™ whose correlations
receive quantum corrections from the semi-fast gluons.

These induced correlations must be computed to leading order in «,ln(1/b)
(LLA), but to all orders in the classical fields A'[p] (since we expect A" ~ 1/g
at saturation). This amounts to an one-loop caleulation, but with the exact
background field propagator (a*(r)}a” (y)), of the semi-fast gluons. For instance,
the gquantum corrections to the 2-point function read schematically:

<(.Ai [p] + SAN(A[p] + 5‘4'j)>p — AplAlp] =

= Apl(6ATY, + (54, Al[p| + (5 A6 ATY, (3.14)

where the brackets (- - ), stand for the quantum average over the semi-fast tields
in the background of p; this average is defined as in eq. (3.8), but with the
functional integral now restricted to the fields a#. The purpose of the quantum
calculation is to provide explicit expressions for the l-point function (§.4%), and
the 2-point function (§.A4'6.47), as functionals of p (to the indicated accuracy).
Once these expressions are known, the 2-point function (A'(x)A7(y)) at the
scale AT can be finally computed as:

H%U=«MM+MMNM+MW)W, (3.15)
A

!
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AY
weight function Walp], as in eq. (3.9).

where the external brackets (-- )1y, denote the classical average over p with

ITI) We finally show that the induced correlations can be absorbed into a func-
tional change W« [p] — Wya+lp] in the weight function for p. That is, the result
(3.15) of the classical+quantum calculation in the effective theory at the scale
A* can be reproduced by a purely classical calculation, but with a moditied
weight function Wia+[p], corresponding to a new effective theory:

(((Ao] + SAY (A o] +047)), >W,\ = (A'A D)y, (3.16)

where the average in the r.h.s. is defined as in eq. (2.6), or (3.9), but with weight
function Wi+ [p]. This demonstrates the existence of the effective theory at the
softer scale bA™T,

Since AW = Wiar — s x ag In(1/0), the evolution of the weight fuuction
is best written in terins of rapidity: Wrypar - Wr = -ArHW,, where 7 =
(P*T/AH), A7 =1n(1/D), and H = H|p, %] is a functional differential operator
acting on W (generally, a non-linear funcsional of p). In the limit A7 — 0, this
gives a renormalization group equation (RGE) describing the flow of the weight
function with 7 [33, 36] :

W} _ —H[p,i]n;[p]. (3.17)
ar dp

By integrating this equation with initial conditions at 7 < 1 (i.e., at AT ~
P7*), one can obtain the weight function at the rapidity 7 of interest. The
initial conditions are not really perturbative, but one can rely on some non-
perturbative model, like the MV model discussed in Sects. 2.4-2.5.

A key ingredient in this approach, which makes the difference w.r.t. the BFKL
equation, are the non-linear effects encoded in the background field calculation.
Recall that p, and therefore the classical fields A'[p], are random variables whose
correlators (2.6) reproduce the gluon density and, more generally, the n-point
correlation functions of the gluon fields at the scale AT. Thus by computing
(quantum corrections in the presence of these background fields, and then aver-
aging over the latter, one is effectively studying quantum evolution inn a medium
with high gluon density. After each step in this evolution, the properties of the
medium (i.e., the correlators of p) are updated, by including the latest quantum
corrections. In terms of Feynman graphs of the ordinary perturbation theory,
this corresponds to a complicated resummation of diagrams describing the inter-
actions between the gluons radiated in different parton cascades and at different
rapidities. A typical such a diagram is shown in Fig, 16. At low density, where
the non-linear effects can be neglected, eq. (3.17) correctly reproduces the BFKL
equation [36], as it should (see Sect. 3.5 below).
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Figure 16: A typical Feynman diagram that is implicitely resummed in the
quantum evolution of the effective theory.

3.3 The Colour Glass Condensate

Note the special forin of the average in eq. (3.7). This is not the same as :

[ Dp Walo) [ DAAF () A" (y) o514
[ Dp Walp] [* DA eslAnl ‘

(3.18)

In eq. (3.18), both the colour source p, and the gauge fields A# are dynamical
variables that are summed over on the same footing, They are free to take on
values which extremize the total “effective action™ :

Serrld pl = S[A, p] — iInWa[p]. (3.19)

By contrast, in eq. (3.7), the average over A* is taken at fixed p : the gauge
fields can vary in response to p, but p cannot vary in response to the gauge
fields. That is, p i3 not a dynamical variable, but rather an “external” source.
Giving a colour charge distribution p, (T) specities a medium in which propagate
the quantum gluons. But this medium is, by itself, random, so after performing
the quantum analysis at fixed p, one must also perform an average over p. The
reason for treating p and A* differently lies is the separation of scales in the
problem: the changes in p happens on time scales much larger than the lifetime
of the soft gluons. This situation is typical for amorphous materials called
“olasses”.

The prototype of such systems is a “spin glass” [43]. that is, a collection of
magnetic impurities (the “spins”) which are randomiy distributed in a non-
magnetic metal host. For instance, one can take the spins to sit on a regular
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lattice with lattice sites 4, j,..., and interaction Hamiltonian

H7 ‘S} Z Iubl‘v e (3.20)

SN

(the swm runs over all pairs < 7,j >, and the spins §; are allowed to take two
values, +1 or —1), but let their interactions (the “luk variables™ J;;) to be
random, with a Gaussian probability distribution, for simplicity:

.I;-‘
dP[J H ATP(T),  P(J,) = ——e T (3.21)
SN ¥ \ 2 T'.Ai]

Physically, this corresponds to the fact that the modifications in .J;; occur on
time scales much larger than the time scales characterizing the dynamics of the
spins (e.g., their thermalization when the system is brought in contact with
a thermal bath). In practice, the Ji;'s are frozen iuto their fixed values by
rapid cooling when the sample is prepared. This kind or rapid cooling is called
“quenching”, and one says that the J;;'s are “quenched variables™, as opposed to
the “dynami(‘dl variables™, the spins S;. This procedure selects random values
for the .J;;’s, with the probability distribution (3.21).

Thus, the spins thermalize for a given set of “quenched variables”, and for each
such a set one can compute the thermal partition funciion and the free energy:

Zl0) =" e Bl Rl = ~Thuz[J]. (3.22)
{s}

But the J;;'s are themselves randomn, so the experimentally relevant quantity is
the following average

= (FIJ)) = / dP[J|F[J] = ~T /Q/p[.f] In Z[7]. (3.23)

Note that it is In Z[J], not Z|J| itself, which should be averaged (“quenched
average”). Siilarly, (counected} correlation functions are generated by the
free energy in the presence of a site-dependent external magnetic field:

) e . VAN ,
(S.S5) = (Si)(s;) = T? / "P['”;mT[u,-]’ (3.24)
with In Z[.J, h] defined as in eq. (3.22), but with H;[S] — H[S] =3, .S,
Eqgs. (3.23)—(3.24) are the analogs of eq. (3.7) for the problem at hand: the
colour source p, is our “quenched variable”. and the quantumn average over 'rhe
fields A* at fixed p, eq. (3.8), corresponds to the thermal average at fixed .J;;'s,
eq. (3.22). As in eq. (3.23), it is lu Z, and not Z., which is effectively (.wer(.xge(.l
in eq. (3.7) (the average of Z would rather corresponds to eq. (3.13)). In fact,
the connected correlation functions of the soft gluons in the etffective theory are
obtained from the following generating functional:

Fli*] = /D/)U,\[/)] 1n</ DASAT) 514 Pl-'““)

,-\
[ %]
Lo
ot

=
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which is the analog of eq. (3.23) with In Z[J] — ln Z[J, L]. (The external current
j¥ in (3.25) is just a device to generate Green’s functions via differentiations,
and should not be confused with the physical source p,.)

We are thus naturally led to interprete the small-x component of the hadron
wavefunction as a glass, with the colour charge density playing the role of the
spin for spin glasses. Thus, this is a colour glass. Unlike what happens for spin
glasses, which may have a non-zero value for the average maguetization (S;) (at
least locally, i.e., at a given site), the average colour chiarge must be zero,

(T = 0 at any T, 3.26)
{

by gauge symmetry. In practice, this is insured by the fact that we sum over
all the possible confignrations of p, (¥) with a gauge-invariant weight function.
Let us however examine a particular configuration p,(¥) from this ensemnble.
We now argue that, at sufficiently small x (or large atomic number A), this
configuration describes typically a Bose condensate.

This applies to the saturated modes, i.e., the modes with transverse momenta
Aoep € ki < Qs(7) and longitudinal momenta k+ = xP* < PT. As argued
in Sect. 2.5, these modes are characterized by a high gluon number density in
the transverse phase-space, N (k.) ~ 1/, (This prediction of the classical
MV model remains valid atter including the quantum evolution, as we shall see
in Seet. 5.4 below.) Microscopically, these modes correspond to bosonic states
with large occupation numbers ~ 1 /o, Each such a state is a Bose condensate.
More precisely, the general definition of a Bose condensate is that of a quantum
state in which the Fock space annihilation operator a',(l::.) (cf. eq. (2.13)), or,
equivalently, the field operator A!(x), takes on a non-zero expectation value.
This situation may be characterized as the spontaneous generation of a clagsical
field. Of course, this cannot happen for gluons in the vacuum, as it would violate
gauge synunetry. And, in an absolute sense, this cannot happen in a hadron
neither. since the average colour charge vanishes there too (cf. eq. (3.26)), and
therefore so does the associated classical field: (Ai[p|) = 0. But in the hadron
there are colour sources, and, ag argued before, thev can be even treated as
a classical charge distribution which is frozen during the short lifetime of the
small-x gluons. Thus, over such a short time scale (short as compared to the
typical time scale for changes in the colour distribution), one effectively has a
non-trivial classical field A%[p]. At saturation, this field is typically strong (cf.
eqs. (2.68) and (2.44)) :

N2_11—e i

<Aii’-.(u)Ai‘L(zu)> e — (3.27)
ni¥e ST

—_ - 1 R -

A"~ ALGAL) . for 1y > 1/Q,, (3.28)

——
v EsTY
and its typical amplitude (3.28) at large 1} is even independent of the actual

strength g ~ /{papa) ~ s of the colour source. This can be thus characterized
as a Bose condensate.
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We thus see that it is the same fundamental separation in time scales which
allows us to speak about both the colour glass and the Bose condensate, although
these two concepts seem at a first sight contradictory: the notion of a “plass”
makes explicit reference to the average over p, while the “condensate” rather
refers to a specific realization of p, before averaging.

3.4 The renormalization group equation

As explained in Sect. 3.2, the quantum evolution of the effective theory is
obtained by matching correlations computed in two ways: (a) via a classi-
cal4-quantuin calculation in the effective theory at the scale AT, and (b) via
a purely classical calculation within the effective theory at the scale DA™, The
quantum corrections that are included in this way are those generated by the
coupling between the “semi-fast” gluons with p* momenta in the strip (3.12) and
the “soft” gluons dA# with momenta |pt| < bAT. To the accuracy of interest,
it is sufficient to consider the eikonal coupling 64790, to the plus component
(Sj(f = §p, of the colour current of the semi-fast gluons. Indeed, these gluons
are relatively fast moving in the &¥ direction, so dp, is the large component of
their current.

The results of the matching can be summarized as follows:

i) To O(asln(1/b)). the induced correlations of the transverse fields A! (see
eq. (3.14) for an example} can be all related to the following l-point and 2-
point functions of dg (with Ar =1n(1/b)) :

1/ ) L
oolry) = A—T/ dr™ {dpa (), s (3.29)
Yab(Ti,yy) = AL /d,z'" /(’ly“ (8pa (T ) Spu (2, 7)), (3.30)
AT ,

where, as in eq. (3.14), (- -+), denotes the average over semi-fast quantum fluc-
tuations in the background of the tree-level source p.

Thus the quantum evolution consists in adding new correlations o and y to p.
i) These new correlations can be included in the weight funetion W |p| by
allowing this to evolve with 7 according to the following RGE [36, 37] :

a2

Spe(r)pt(yL)

y v
P — — 2 (17,09 331
[T X J,y] (S/)‘;_ (41'_1_ ) l ‘T.r] ( 1)

oWelp] 1
ar 2

We use here compact notations where of = o,(x1), \..(11'137/ = vablx, Y1), and

repeated colour indices (and coordinates) are understood to be summed (infe-
grated) over. The notation pf(x) will be explained later (see eq. (3.46)).

A complete proof of the statements above would require the lengthy analysis
of Refs. [37]. But assuming them to be true, it is easy to understand the
general structure of the RGE (3.31). Indeed, according to eqs. (3.29)-(3.30), the
induced correlations that we need to take into account are (with the notations



of eq. (3.15)):

<<([’(1 + (§/3¢1)3-1 (/71) -+ (sl-sl))}/l >;‘7 >H' - </)n(~l'_L JonlyL )>”_ (5'32)

T

= / Dlp| Wi pl At {oa(xi)pp(yr) + palr)op(yr) + Xanler, yi)} =

) 1 §° '
= [ Dlp]W[p) AT oS ——— + -\ ———— L () e (1),
/ [/}] [/’] T{(T., (5/)“(‘:,1.) + 2\-11 ()/]c(zl)(‘)pd(“l) }/) (I_L)ﬂl (.l/_l_)v

where the colour indices ¢, d (the transverse coordinates =, v ) in the last line
are to be summed (integrated) over. After a few integrations by parts w.r.t. p,
the last expression can be recast into the form:

/ Dip} paleL)on(ye) AW, (3.33)

with AW, [p] given by the finite-difference version of eq. (3.31).
In egs. (3.32)—(3.33), we have considered only correlators of two-dimensional
(or “integrated”) charge densities, like

pa(ry) = /(zl;r~ pa{r” ), (3.34)

and similarly dpq (2 ). This is in agreement with eqs. (3.29)-(3.30), which show
that only such integrated (over 27 ) quantum corrections are relevant to the or-
der of interest, and is moreover physically intuitive: The soft gluons (kT £ DAT)
to which applies the effective theory are unable to discriminate the internal lon-
gitudinal structure of their sources, which are localized in 27 over relatively
short distances < 1/bA¥, because of their large p* momenta. Although es-
sentially correct, this argument is a little too simplistic as shown by the fact
that some of the quantities encountered before are in fact sensitive to the lon-
gitudinal structure of p (i.e., they are not simply functionals of the integrated
charge density (3.34)). A generic example is the background field A*[p], or any
other quantity built with the Wilson lines (2.38) or (2.45). Such quantities are
sensitive to the x~ dependence of p because of the path-ordering of the Wilson
lines in x~. The ordering is important since colour matrices p(ax™) = pa(v™)T°
at different values of #7 do not commute with each other. This suggests that
the correct way to think of an “integrated™ version of the hadron (over x7) is
in terms of Wilson lines — which take into account the colour precession in the
colour field of the hadron, with the proper ordering of colour matrices —, and
not of 2-dimensional charge densities like (3.34). This will be confirmed by the
subsequent analysis of the quantum corrections.

3.4.1 The quantum colour source

For the purposes of the quantun calculation, it is usetul to expand the action
S[A. p] = S[A+ a+ §A4, p] to quadratic order in the small Huctuations ¢, and
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retain only their eikonal coupling to the component 44, of the soft fields:

SA+ A +a,p] = S[A+ 04, pj+ 5(1“(.1.')(#"1(.1'. Wple(w) — 647 dpa.

T
(3.35)
with
e . 52814, p| o
Gl (v ] = —a i B 3.36
o )l SAECe0A ()| (3.36)
828 1 838
gty ————m——— 1 al(y) — = s vat(z),
pel) dAg (x)dAy(n) A""(”) 2547 (16 AV (y)d.AM(2) _4””(‘“)""( )

(3.37)

where it is understood that only the soft modes with A £ bAT are kept in the
products of fields.

The expansion (3.35) corresponds to a one-loop approximation for the soft cor-
relation functions like (3AY), and (§4°647), (cf. eq. (3.14)), but where the
propagator iG* (x.y) = (Ta*{x)u” (y)), of the semi-fast gluons running along
the loop is computed in the background of the tree-level tield A'[p], by iuverting
the differential operator in eq. (3.36).

a) by

Figure 17: Some typical Feynman diagrams for y and o. The internal wavy
lines are propagators of the semi-fast gluons; the external dotted lines carry soft
momenta, and couple to the fields A~. (a) A contribution to y. The external
blobs denote insertions of the electric field F**: the internal line with a hlob
denotes the background field propagator. (b) A contribution to ¢ to linear order
in p. The continuous line represents the source p.

To gain some more intuition, we use as an example the contributions to dp,
coming from the Yang-Mills piece of the action, Sy = [ (14‘1:(——]5’5,, /1) :

8pa()|y y = 20V FF(D)al(x) + gf (0T ap(e))al(2). (3.38)

The first term in the r.lis., which is linear in @', is the only one to contribute
to v, eq. (3.30), to leading order in «;. It generates the tree-like diagram in
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Fig. 17.a, where the internal line with a blob represents the background field
propagator G¥ (. y) of the semi-fast gluons. Physically, Fig. 17.a describes the
emission of an on-shell (or “real”) semi-fast gluon by the classical source.
Since {a*) = 0, it is only the second. quadratic termn in the r.h.s. of eq. (3.38)
which contributes to o, eq. (3.29). In Fig. 17.b we show such a countribution of
lowest order in p. (This iuvolves also vertices from the Wilson line piece of the
action, eqgs. (3.10)—-(3.11).) Obviously, this represents a vertex correction to the
tree-level emission in Fig. 10.a.

The structures illustrated by Figs. 17.a and b are generie: v is the “real” correc-
tion, whose iteration generates the gluon cascades; o is the “virtual” correction,
which provides one-loop corrections to the emission vertices in these cascades.
Both x and ¢ include terms non-linear in p which describe interactions among
gluons at different rapidities in different cascades. In general, real and virtual
corrections are related by gauge symumetry, and this is also the case for v and
o, as we shall discuss later.

The diagrams contributing to ¢ and y in the general case, together with their
explicit evaluation, can be found in Ref. {37]. Here, we shall present only the
final results of this calculation.

3.4.2 The induced colour source and field

For the reasons explained in Sect. 2.3, it is more convenient to work with the
colour source j, in the covariant gauge. The corresponding weight function
W[p] obeys an evolution equation similar to (3.31), but with modified coetfi-
cients ¢ and Y. which are obtained from the LC-gauge coeflicients ¢ and y via
the gauge rotation (2.36). In what follows, we shall give directly the final results
for these COV-gauge guantities.

Consider first the induced source 6p° = (3p"),. that is, the correction to the
average colour charge density generated by the polarvization of the semi-fast
gluons. After rotation to the COV-gauge, this reads [37] :

3pa(T) = Fala™ ) (=Vira(ry)). (3.39)

where the “form factor”

(‘—ibAJ;_ ‘_,—ii\r :
Fa(r™) = 6(x7) - - , (3.40)

X

specifies the longitudinal profile of §5,, while (VI = Vi), ef. eq. (2.45))

. ig APz 1 hes y
v = 2 : Tr(T"HL) 3.41
() o / 2m)? (vy — 1) v ( )
contains the dependence upon the background field «, (via the Wilson lines V'
and V1), together with the transverse and colour structure of p,. By comparing
eqs. (3.39) and (2.33). we deduce that F{x™w(ry) is the induced field in the
COV-gauge, i.e., the quantum correction to the tree-level field .. Since:

/(1.1‘”51\(.1:”) = ln[l7 = AT, (3.42)

46



eqs. (3.29) and (3.39) immediately imply :
Galxy) = =Vire(ry). (3.43)

This is the coefficient of the virtual term in the RGE for W, [p].
But the longitudinal structure of 67, is also interesting. Eq. (3.39) shows that
the induced source and field have typically support at”

/AT S = S 1/(bAT). (3.44)

Recall that 67, has been generated by integrating out quantum Huctuations in
the strip bAT « |p*| « A*. Thus. when integrating out quantum gluons in
layers of p*, one builds the classical source p (or field «) in layers of x~. with
a one-to-one correspondence between the +~ coordinate of a given layer and
the p™ momenta of the modes that have been integrated out to generate that
layer. By induction, we deduce that p,(F) (= the colowr sonrce generated by the
quantum evolution down to AT) has support at 0 < o~ £ 1/A™, as anticipated
in Sect. 2. This allows us to consider only positive values for £~ in what follows.
To exploit this tight correspondence between p* and »7, it is convenient to use
the space-time rapidity v,

v=h{x"/ey), oy = 1/]—‘“. —o0 <y <00, (3.45)

to indicate the longitudinal coordinate of a field. We shall set, e.g.,

prle) = ampt (a7 wy) for @7 =ug =156,
/(iyp;f(;lrl) = /d;z:_ pHx” ), (3.46)

and similarly for the other fields (7, «, etc.). The previous discussion on the
longitudinal structure can then be summarized as follows:

The source p%(xy) generated by the quantum evolution from 7 = 0 up to 7
has support at y in the interval 0 < y < 7. When new quantum modes, with
rapidities 77 in the interval 7 < 7/ < 7+ A7, are integrated out, the preexisting
colour source at y < 7 is not changed, but some new contribution is added to
it, in the rapidity bin 7 < v < 7+ A7. Because of that, AW = W,a, — W,
involves only the change in p, within that last bin. In the continuum limit
A7 — 0, this generates the functional derivatives of W5 with respect to pf at -
v = 7, as shown in eq. (3.31). This clarifies the longitudinal structure of the
RGE.

Consider also the transverse and colour structure of the induced field (3.41).
This can be understood by reference to Fig. 17.h. The transverse kernel in
eq. (3.41) has been generated as:

1 1 |
(2m)2 (22 —21)% 2w (wy —zp)? 27 (v — 21 )2
9ndeed, Fa(r~) = 0 both for small 2~ « 1/AT (since in this case the two exponentials

mutually cancel), and for large 2~ 3 1/bAT (where the two exponentials are individually
small).

. (3.47)




where (compare with eqgs. (2.34) and (2.53))

Lot =2 y 1 oy -yt L .
— =0z — |z = —— SR FL =) 3.48
2m (xy — z1)? Tl -V l20) / (2m)* p3 ¢ ( )

is the propagd’rol of the semi-fast gluon emitted by the source p (recall that
FH =z (ip! [p3 )p to linear order). The two Wilson lines in eq. (3.41) account for
the scattering of this semi-fast gluon off the background field at z; (this brings
in a factor Vi(z1) in the eikonal approximation), and for its gauge rotation by
the classical field A'(T) at »~ > 1/AT (cf. eq. (3.44)). which is a pure gauge
(ef. eq. (2.43)).

3.4.3 The RGE in the a—representation

Eq. (3.43) suggests that it may be technically simpler and physically more trans-
parent to work directly with the classical field o, and the quantum corrections
to it (like v,), rather than with the colour source g, and the corresponding
corrections (like &,). This point of view is also supported by the fact that the
LC-gaunge field and the related observables are primarily related to ¢, (c¢f. Sects.
2.2 and 2.3), and reexpressing them in terins of p — with the help of eq. (2.34)
— would introduce a dependence upon the unphysical infrared cutotf u.

For these reasons, we prefer to work in the a-representation, in which observ-
ables are expressed in terms of o, and the average is performed with the weight
function Wy [a] = W,[p = —V3 . This satisties the following RGE, which is
obtained after a change of variables in eq. (3.31) :

?)I:VT [(Jf] 1 (52 r ab - ;
=5 T ] I E— A T "f] . 3.49
or  28a%(x))dab(y)) [Tz dex?(. l) (o (3.49)
where v = v (1), cf. eq. (3.41), and r/‘fz’, =™ (ry, ). with
ab ’ 2 2 / 1 ~ab 1 3 BN
N rLyn) = [ dhadtun{en = le) YL v Gl == IUJ_) (3.50)

It is thus sufficient to give the result for the “real correction” (§p.dpp), directly
in the a-representation (cf. egs. (3.30) and (3.50)). This reads [37):

abg T G (V.

1) = (2m)2 (wr — 2102 (yy — =0)?

ab
” {1+ijis;,—v,.ft-;—x:’fv,,} . (351

The transverse and colour structure of n have the same pattern as discussed
after eq. (3.53) in connection with v.

The r.is. of eq. (3.49) involves functional derivatives w.r.t. the colowr field
af(xy) at the end point y = 7. When applied to the coefficients  and v, this



requires the corresponding derivatives of the Wilson lines 1 and V1, that we
compute now. Note first that, since oy = 0 for y > 7, we can rewrite

"!T(.I‘l) = Peill'l;"‘i‘ dy oy (1) = Pe¥ 2. (l_\'(v;.y(,b_‘_)’ (352)

A (e —yo)):

Il

Therefore (with d,,

(SVT(.I'_L) L . oVi(xy) e e o
L g, TV ), = = —igd,, V(e )T 3.53
(;Ck‘.';’l(]/_]_) L.g( Y (l_l.) IS(\;I—(,U_L) /f]( 7 (I_L) ( )

A simple interpretation of the four terms in eq. (3.51) follows from the dual
picture of the dipole-hadron scattering, in which the quantum evolution is put
in the dipole wavefunction, and, more generally, in the Wilson line operators
through which a generic external projectile scatters off the hadronic target [44,
45, 46, 47, 48, 49, 50, 51]. (See also the lectures notes by Al Mueller in this
volume [14].) Recent analyses of the high energy scattering from this dual
perspective have led to a set of coupled evolution equations for the correlation
functions of Wilson lines, originally derived by Balitsky [44] (see also [45, 50]).
and subsequently reformulated by Weigert [47] in a compact way, as a functional
evolution equation for the generating functional of these correlation functions.
It turns out that Weigert’s equation is equivalent to the RGE (3.49) [37, 52],
which demonstrates the equivalence between the two descriptions — the target
picture and the projectile picture — of the nonlinear evolution in QCD at small
x. We shall say more on Balitsky’s equations in Sect. 4.3.

3.5 Recovering the BFKL equation

Before studying more general properties and consequences of the RGE in the
next section, let us rapidly show that, in the weak field (or low density) limit, this
equation reproduces the BFKL equation, as expected [36]. Eq. (3.32) implies
the following evolution equation for the 2-point function {pp)~ :

%(/)u(:u)/.w(;l_u))r ={oa(xL)pp(yr) + palr)op(yr) + xalvr,yr))s  (3.54)
For a generic, strong, source p, the coefficients o and \ are non-linear in p to all
orders, so the r.h.s. of eq. (3.54) involves n-point correlators (p(1)p(2) - - - p(n)) -
of arbitrarily high order’® n. But in the weak field limit, where ¢ is linear in
p and y is quadratic, this becomes a closed equation for the 2-point function,
which coincides with the BFKL equation, as we show now.

Specifically. consider the evolution equation for the following 2-point function:

(k1) = (palkL)pa(=F1))r. (3.55)

107ncidentally, this shows that the n-point functions of p do not forin a convenient basis
to studv the non-linearities in the evolution. By contrast, the correlators of the Wilson lines
form a more convenient such a basis [44, 5], as we shall discuss in Sect. 1.3.
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{(pa(ky) is the Fourier transform of p,(ry)}), which according to eqs. (2.16) and
(2.54) represents the “unintegrated gluou distribution™ :
OxG(x, k%)

.2 (9 R
Olnky x p (kL) (3.56)

in the weak field regime. In this regime, one can also expand VI = 1+ iga(xy),
and therefore

Te(TeVIV,) = igN.(a*(xy) — o*(z1)).

Then, eq. (3.41) reduces to (with a; = g* /4w and Afic't(t(k‘l) = pa(ki))

d*py k2

()} k = vy V(» O o) - - = .
ay (k1) s Ne pa l)' (2m)? pi(pL —ko)?

For v one obtains similarly

o [ &L palpi)pa(—pL) .
(0) k ,“]\' = —l 47V li‘.z / ‘ 1, . 3r3
oo (bt =) = A0V [ G B - ) 55

By inserting egs. (3.57) and (3.58) into the evolution equation (3.54), and using
(3.55), one finally obtains:

At 2 8 /e . i 3
—.—C ll?:_(]\l) = (1‘ i\IL / dzp_J_ 5 A—L B /'17(7)1)
ar T pilky —pr)*
(.'lgf’\"y,: " /‘.2 i . z
_— ) ———t—— 1 k). 3.59
o7 /‘ P e —po ) priL) (5:59)

which coincides, as anticipated, with the BFKL equation [3, 4]. The first term
in the r.l.s., which here is generated by x'?, is the ree! BFKL kernel, while the
second term, coming from ¢! is the corresponding virtual kernel.

Note finally that the BFKL approximation has been obtained by expanding the
Wilson lines to linear order in go®; thus, this is formally the same as the lowest
order perturbative expansion of the RGE.

4 A functional Fokker-Planck equation

We now dispose of a powerful tool - — the functional RGE (3.49) — to construct
the effective theory by integrating out quantum fluctuations in perturbation
theory. Eq. (3.49) has arich and elegant mathematical structure, to be described
in Sects. 4.1 and 4.2. Then, iu Sects. 4.3 and 5, we shall indicate two strategies
to make use of this equation:

i) One can use it to derive ordinary (i.e., non-functional) evolution equations for
the correlation functions of interest, like we did for the 2-point function {(pp),
in Sect. 3.5. When specialized to correlation functions of the Wilson lines, this
strategy leads to a system of equations originally derived by Balitsky [44]. This
will be discussed in Sect. 4.3.
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A difficulty with this approach is that it generally leads to coupled equations
(the 2-point function is coupled to the 4-point one, etc.). so that one has to
follow simultaneously the evolution of infinitely many correlators. Still, some
progress has been done, by using functional techuniques [53], and, especially, by
recognizing that, in the large N, limit, a closed equation can be written for the
2- point function: this is the Ixu'v'\"ﬁCgO'v' t'quuuun {»t )]

it) One can try and solve directly the functional RGE. with appropriate initial
conditions. An exact but formal solution can be written in the form of a path
integral [52]. This is well suited for lattice simulations in 2+1 dimensions. But
approximate analytic solutions, which allow for a more direct physical insight,
have been found as well [10. 57]. These solutions will be described in Sect. 5.

4.1 General properties and consequences of the RGE

We start with a summary of the most important properties of the RGE (3.49).
i) The coeflicients 1 and v are real quantities. Moreover, 7 is sym-
metric: 7u(ra, 1) = Mea(yr, r1), and positive semi-definite.

ii) The RGE preserves the normalization of the weight function:

/'Da Wela] = 1 at any 7. (4.1)

Indeed. the r.h.s. of eq. {3.49) iz a total derivative with respect to . Thus, if
eq. (4.1) is satistied by the initial condition at 7y, it remains true at any 7 > 7.
Properties (i) and (ii) guarantee that the solution Wr[¢] to the RGE has a
meaningful probabilistic interpretation (ef. the discussion prior to eq. (2.4)).
iii) The momentum rapidity 7 and the space-time rapidity y are iden-
tified by the quantum evolution. That is, the field ¢, in the rapidity bin
(v, v+ dy} is generated by the quantum evolution from 7 =y up to 7 = y +dy.
This follows from the discussion in Sect. 3.4.2, and implies that the two rapidi-
ties can be treated as only one variable, the “evolution time™.

With this interpretation, the function {ag(x1) | — o0 < v < 20} — which phys-
ically represents the longitudinal profile of the 3-dimensional field a®(x™. L)
in units of rapidity (cf. eq. (3.46)) — is viewed as a trajectory in the tunctlona-l
space spanned by the 2-dimensional fields o%(ry ). Quantum evolution then
appears as the progression of the “point” a“(x1) aloug this trajectory. Thus,
eq. (3.49) describes effectively a field theory in 241 dimeunsions (the transverse
coordinates and the “evolution time™), which is liowever non-local in both x )
and y (qince the coefficients (3.41) and (3.51) of the RGE involve ey at all the
“times” y < 7, via the Wilson lines (3.52)).

iv) The initial condition. Let the quantum evolution proceed from some
original “time” 7y up to the actual “time” 7. The “trajectory” {ad(vy)| —o0 <
y < oo} can be decomposed into three pieces: a) The field oy at y < my belongs
to the initial conditions. b) The field «y at 7y < y < 7 is generated by the
quantum evolution. ¢) There is no field at all at larger y: oy =0 foranyy > 7
Thus:

Wela] = o] Wela]. (4.2



where a;‘f (a" ) is the function e, for y < 7 (respectively, y > 7) :
ayly) = 0(t — y)r.:r};f(;r“ + O0(y — T)ag (rL), (4.3)

and the d-functional d[a”] should be understood with a discretization of the
configuration space, as in eq. (2.5):

Sle”] = H HH dag(r)). (4.4)

YT oa &y

Moreover, it can be shown [10, 52] that W-[a™] has the factorized structure:
Wela™] = Wr z|a| Vo] Wryla] (4.5)
where Wy, [a] is the initial weight function at 7o, and
Vi(ry) = Pet ] dyanten) (4.6)

is the Wilson line built with the initial field. In eq. (4.5), it is understood that,
in Wi, the field argument ay has support at y < 79, while in Wy ,, it has
support at 7o <y < 7. The “propagator” W, , from 7y to 7 depends also upon
the initial field at y < 7o, but only in an integrated way, via the Wilson lines 1
and V};. From eq. (4.5) we deduce that W, 5, [c|Vy] — 1 when 7 — 7.

The initial weight function W,, caunot be obtained within the present formal-
ism, but rather requires some model for the hadron wavefunction at rapidity 7.
It is convenient to choose a moderate value for 7o = ln(1l/xp), e.g., Xo 2 1072
This xg is small enough for the LLA to apply, but still large enough for the non-
linear effects to remain negligible. Then one can use initial conditions which
are consistent with the standard, linear, evolution equations (cf. Sect. 5.3 be-
low). Once a convenient value for x¢ has been chosen, one can always redefine
7 = In(xo/x) so that the initial condition is formulated at 7p = 0. With this
choice, the field o at positive rapidities y > 0 is generated by the quantum
evolution, while the field at negative rapidities y < 0 must be specified by the
initial condition.

v) The Hamiltonian structure of the RGE. Eq. (3.49) can be rewritten
as:

W, o] 4 1, oW, TRt

. = - T - —vr | We s, 4.7
or S () 2,11”()(_1:1;(yl) 2 dab(yy) Ve T (.1)

A crucial property, with many consequences. is that the second term within
the braces is actually zero. Indeed, the following relation holds between the
coefficients of the RGE [47, 37]:

1 [, (o, ) ’
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It is eagy to prove this relation by using eq. (3.53) to act with § /(5(.11;( Y1) on
Nab (T2 Y1), eq. (3.51). This vields, e.g.,

ﬂ!T ac (“,’C’J
v”f ab Ve ‘;rb L'er' u 1.9
dod (U.L)( dab(yL) 7 T Sob(yy) (49)
I - Wyt reb (2) 'i”(lt,‘. - b _
= ighay (1 y,,)acx —igd 0V Tr) =,

where both terms in the second line vanish because of the antisymmetry of the
colour group generators in the adjoint representation (e.g., (T")ap = 0). The
only nonvanishing contribution is

)
dab(y)

which reproduces indeed eq. (3.41) after integration over y. , since:

(! —z")(y' —z") _ !
r1—z1 )% (YL -z

(VIVL)™ = —ighy, (T"Vﬁf’; ) = 'i.qél.;,Tll(T“\f;Tl»’;,), (4.10)

ab

~ for yy—ay. (4.11)

Kri,y.,z.) = X
5 ( 1) (vo-m)?
With egs. (4.7) and (4.8), the RGE can be brought into a Hamiltonian form:
OW-[al

or

= — HW,[o], (4.12)

with the following Hamiltonian:

i "d*z :
H = 2oy | d? A S :/ LT ()T (2
/( l_L/( UJ_ 7“, ;l‘__]_) }ru (Sﬂg.(l/_]_) ' 27 (1,( J_) (1,( ....))
d?x, -0 i
Ji(zy) = : = (1= VIV ap —— 113
(71 / 2 (2 —wy)? ( 2 Vedat dab () ( )

which is Hermitian (since r]‘l"{/ is real and symmetric) and positive semi-definite
(since the “current” Ji(z)) is itself Hermitian).

vi) The infrared and ultraviolet behaviours of the RGE. These are deter-
mined by the kernel 7% (3, v, ) in the Hamiltonian. In the infrared limit, where
z) is much larger than both x) and y. (see eq. (3.51)), K(x1,y1,21) = 1/2'_"?_,
and the ensuing integral (dzy /2% ) has a logarithmic infrared divergence!l.
Thus, there is potentially an IR problem in the RGE. This is not necessar-
ily a real difficulty, since IR problems are expected to be absent only for the
gouge-invariant observables. We shall see indeed, on specific examples, that
the IR divergences cancel when the RGE is used to derive evolution equations
for gauge-invariant quantities. This cancellation relies in a crucial way on the
property (4.8).

Coming now to the ultraviolet, or short-distance, behaviour, it is easy to see on
eq. (3.51) that no UV problem is to be antic ileted For instance. the would-be
linear pole of K(xy1.y1,21) at [zL — 21| — 0s actually cancelled by the factor
1 — V1V, which vanishes in the same limit.

L1Thig fnfrared behaviour is not modified by the z; dependence of the Wilson lines since,
e.g., (VaV:) — 0 as |z — x| — oo; cf. Sect. 5.2 below.
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4.2 Quantum evolution as Brownian motion

To clarify the probabilistic interpretation of the RGE (3.49), we start by recall-
ing the simplest example of a stochastic process, namely the Brownian motion
of a small particle in a viscous lignid and in the presence of some external force,
like gravitation [59]. The particle is so small that it can feel the collisions with
the molecules in the liquid; after each such a collision, the velocity of the particle
changes randomly. And the liquid is so viscous that, after each collision, the
particle enters immediately a constant velocity regime in which the friction force
o vt (with v* the velocity of the particle) is equilibrated by the random force
due to collisions together with the external force F (). Iu these conditions, the
particle executes a random walk whose description is necessary statistical. The
relevant quantity is the probability density P(r.t) to find the particle at point
£ at time . This is normalized as:

/ BrP(rt) = 1, (4.14)
and obeys an evolution equation of the diffusion type, known as the Fokker-
Planck equation [59] :

AP (. 1) o* , a
= D — - P xT, —
Ot dxtdat (.0 aat

(Fi(;l,'\)P(.l,‘,Z‘)). (4.15)

Here, D is the diffusion coefficient, which is a measure of the strength of the
random force; for simplicity, we assume this to be a constaut. i.e., independent
of ¥ or t. The solution to eq. ({.15) corresponding to some arbitrary initial
condition P(x, ty) can be written as

P(.’I', lL) = / {,{3'1.'() P)(élf, flil'(), tg) F’(.I,'('). {-U): (416)
where P(x, t|xg. o) 15 the solution to (4.15) with the initial condition:

P(x, ty|ro, to) = 8% (x — o). (4.17)

Physically, this is the probability density to find the particle at point » at time
t knowing that it was at wo at time £g.

If P! = 0, this solution is immediately obtained by going to momentuin space:
The Fourier transform P (k,t) of P(x,tolrn.0) = Pz — xq.t) obeys to:

P (k,t)

= ~DE* P(k,t),  P(lt=0) =1, (4.18)
with the obvious solution P(k,t) = e~ Dk*t or, finally.
1 ok x'—.r”);‘y ) N
P(.,I,f — .'lf().f) = W (=] A0 (4.19)

This shows a purely diffusive behaviour: the probability to tind the particle
within a fixed volume ceutered at some point x goes smoothly to zero as t — oo



for any 2 (runaway solution). The correlations of x reflect this behaviour too;
for instance:

r—z(f) = ((x— .l‘())2>(f) = / B (r - ) Ple — vo.t) = 6Dt (4.20)

showing that, on the average, the particle gets further and further away from
the original point xp, but along a non-differentiable trajectory: F(t) Vt, 50
the average velocity 0 = F(A#)/At has no well-defined limit when At — 0.
This situation may change, however, if the motion of the particle is biased by
an external force. Assume this force to be derived from a potential: F! =
—dV/dx!. Then one can check that the time-independent distribution Po () ~
exp[—AV ()] is a stationary solution to eq. (4.15) provided @D = 1. Of course,
this solution is acceptable as a probability density only if it is nornnalizable,
which puts some constraiuts on the form of the potential. But assuming this to
be the case, then Py(x) ~ e~ represents an equilibrium distribution which is
(asymptotically) reached by the system at large times [59]. Once this is done,
all the correlations become independent of time (unlike (4.20)). This solution
is a “fixed point” in the functional space of all (acceptable) distributions.
Returning to our RGE (3.49), it should be clear by now that this is a functional
Fokker-Planck equation which describes a random walk in the functional space
of the colour fields a%(ry ). In this equation, 1 plays the role of the “diffusion
coefficient”, while v is like a “force term”, although this identification is somehow
ambiguous since 7 is itself a functional of «, so its derivatives can generate other
contributions to the force term, as shown in eq. (4.7). (In the analogous problem
of the Brownian motion, this would correspond to a diffusion coefficient which
depends on x and has a tensorial structure: D — D;; (). This situation occurs,
e.g., in the description of a random walk on a curved manifold [59].) In fact,
it is more correct to identify the combination %((5'[}/ day) — v as the etfective
“force term”, since the remaining second-order differential operator in eq. (4.7)
— which describes diffusion — is then Hermitian and positive semi-detinite.

A fixed point of the quantum evolution would be a solution Wa] to eq. (3.49)
which is normalizable and independent of “time” 7. If such a solution existed,
then the high energy limit of QCD scattering would be trivial (at least, within
the present approximations): At sufficiently high energies. all the cross sections
would become independent. of energy (recall that 7 ~ Ins). The relation (4.8)
between the coefficients in the RGE guarantees, however, that such a “fixed
point” does not exist: The effective force in eq. (4.7) vanishes. and the corre-
sponding evolution Hamiltonian (4.13) is just a kinetic operator, which describes
pure diffusion. We thus expect gluon correlations to keep growing with 7 ~ In s
even at asymptotically large energies. In Sect. 5, we shall find approximate
solutions to eq. (4.12) which show indeed such a behaviour [10].
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4.3 The Balitsky-Kovchegov equation

If {(O[c] )+ is any observable which can be computed as an average over cv:
(Ofa])r = / Dla] Ofa] W, (4.21)

(cf. eq. (2.41)). then its evolution with 7 is governed by the following equation:

O [ O]
Fr‘(()[()} )7- = / Do ()[(L]T‘

1 ) ; § _ .
= = N = - O \ 4.22
<‘2 (i) ey S (1) [u}>r ( )

il

where, in writing the second line, we have used eq. (4.12) for OW. /07 and then
integrated twice by parts within the functional integral over a.

Let us apply this to the 2-point function (2.26) of the Wilson lines in the funda-
mental representation. We recall that, physically, this is the S-matrix element
for dipole-hadron scattering (cf. Sect. 2.2.2). A straightforward calculation
yields (see [37] for details):

] e o [ (g —yo)?
(")T< (Ve Vo))e 272 @=L (rr =21 yL — z0)?

x Ntr(VIV,) — o (VIVoee(VIV)) . (4.23)

T

This is the equation originally obtained by Balitsky [44], within a quite different
formalism : by an analysis of the quantum evolution of the dipole itself.

Not that the above equation is not closed: It relates the 2-point function to
the 4-point function (tr(V1V)tr(VJV})). One can similarly derive an evolution
ecuation for the latter [44], but this will in turn couple the d-point function to
a G-point function, and so on. That is, eq. (4.23) is just the first in an infinite
hierarchy of coupled equations {44].

A closed equation can still be obtained in the large N, limit. in which the 4-point
function in eq. (4.23) factorizes:

(e (VI e (VIV,)) . — (ee(V IV (ee(VIV)) o for N — 0.

Then eq. (4.23) reduces to a closed equation for S7 (ry, yo) = {tr{ VIV, )y -/NG

0 e, N, / 2 (w1 —yu)”
= el [ps

— 5 (e, - - 7
or r(a,y) 2w (wy — 20 ) (yL —=1)?

K A8 () = S (wn, 22) 8 () - (4:24)

The same equation has been independently obtained by Kovchegov [45] within
Mueller’s dipole model [46, 14]. (See also Ref. [50] for another derivation.)

An important observation refers to the transverse kernel in egs. ( 4.23) or (4.24):
This is not the same as the original kernel K(x,, 1, 1), eq. (4.11), of the RGE.
Rather, this has been generated as

- . " oo . (ry —a)?
h’(‘l:_'_s;l:.l_: ’:_L) + k(.t/_L\ Ui, ‘:_L) - ZK'('I‘,Ls YL, ‘:_L) = (77_L — ‘j_-)”)(llj_)"‘ ‘_\_)
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and has the remarkable feature to show a better infrared behaviour than eq. {4.11):
When z) 321, 41, the kernel above decreases like (1 —y)?/ :i. 30 ite integral
over 24 is actually finite.

There is currently a large interest in the solutions to eq. (4.24), and significant
progress has been achieved by combining analytic and numnerical methods [19,
45, 50, b4, 55, 58]. The conclusions reached in this way are equivalent to those
obtained from direct investigations of the RGE (3.49) [10, 57] that we shall
review in what follows.

5 Approximate solutions to
the Renormalization Group Equation

We shall now construct approximate solutions to the RGE (4.12) and study
their physical implications [10, 57].

5.1 The mean field approximation

As compared to the standard diffusion equation (4.15), the main complication
with the RGE (4.12) comes from the fact that its kernel # is itself dependent
on ¢. In this respect, eq. (4.12) is similar to the following ditfusion equation:

oP(x,t) O

N
o = g Pulelgy Pt (5.1)

in which the diffusivities D;;(x) are allowed to depend upon the position @ of
the particle. This dependence makes eq. (5.1) difficult to solve in general (i.e.,
for some arbitrary tensor field D,, ()}, But since x is a random variable, with
probability density P(ic, t), a reasonable approximation is obtained by replacing
D;;(x) in eq. (5.1) by its expectation value:

Djj(x) — (D (xe))(t) = / d*x P(x,t) D, j(x) = 8;,D(t), (5.2)

which is independent of x, but a function of time. We denote with a bar quanti-
ties evaluated in this “mean field approximation® (MFA). In particular, P(x, 1)
is itself related to D(#), as the solution to the following approximate equation:

AP(x. 1) R .
ot ) g L) (9:3)
Thus, eq. (5.2) is actually a self-consistent equation for D(t). Being homoge-
neous in , eq. (5.3) is easily solved by Fourier transform, as in eqs. (4.18)-(4.19).

For the initial condition P(w.t = 0) = §3(x). one thus obtains:

ot

_ 1 2 _ ‘
Plet) = ——— &~ T | S(t it D(#'). 5.4
(. t) O e (1) /U ‘ () (5.4)
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By inserting this solution in eq. (5.2), one can compute the average there (as
a functional of D(t)), and then solve the self-consistent equation for D(t), thus
completely specifying the approximate solution (5.4).

This is the strategy that we shall use to obtain approximate solutions to the
functional diffusion equation (4.12). The corresponding MFA reads:

Mzla] 1 / () 821 [ (:
or 2. - i, UL dat(ry )t (yyL)’

o
ot
fb

with
#5e(er,a) = syl = [ Dlaln™ s u) Wl 60

where the trivial colour structure in the Lh.s. tollows from gauge syinmetry. By
the same argument, (¥*(x1)); = 0, which is indeed consistent with the MFA
(5.6) for n and the condition (4.8).

Eq. (5.5) is homogeneous in the functional variable o {x ) (since its kernel v, is
independent of &), so it can be solved by functional Fourier analysis. This is the
straightforward extension of the corresponding analysis for ordinary functions,
and can be more rigourously introduced by using a discretized version of the
3-dimensional configuration space (v, 1), as in egs. (2.5) or (4.4). We write:

flal = [ Dl et S e,

ﬁ:T [a] — / D[ﬂ‘] (‘t‘_i_!' dy | day w;{(:u yarg () ﬁ}[?r] . (5_7)
By inserting this representation for Wo[a] in eq. (5.5), and using
e / dy [ e e es(n) = 1) (5.8)
da(ry)y ) ~ ) T AN T ’ '
one obtains the following equation for ﬁ'}[rr] (compare to eq. (4.18)):
oW 1 . C o
—..;[N—} = - Ye(r oy mi(a ) md () Weln] (5.9)
or 2 e

with the immediate solution (transverse coordinates are omitted, for simplicity):

W] = e 2J0 &wmmd 1iy[a] (5.10)

The argument m, of the initial weight funetion ﬁ]y[n] has support only at v < 0.
After insertion in eq. (5.7), this vields:

W,la] = / Dlr] e” T dymed omn T B wmal = 5l W), (5.11)



with d[e”] defined in eq. (4.4) (this has been generated by the functional integral
over my with y > 7) and

_ 30
Wrla™] = N; (pr{— ~/ dy / ll ‘ (U'L)} Wolad. (5.12)
0 YL

Ny

In this equation, Wy[e] is the original weight function at 7 = 0, and is a func-
tional of the field oy with y < 0. (N; is an irrelevant normalization factor.)
The solution (5.11) -(5.12) has the general structure anticipated in eqs. (4.2)-
(4.5). If the initial conditions are described by the MV model, or any other
MFA, then Wy{«] is a Gaussian too (see, e.g., eq. (2.52)), and eq. (5.12) can be
rewritten as:

Wila<] = A, e‘q){__/ dv/ (ri)al(ye) } ' (5.13)
- Ty )v(l_L:.’/_L)

For y < 0, the width v, is specified by the initial conditions, while at positive
rapidities 0 < y < 7, it is determined by the quantuw evolution, as we shall see.
The fact that the weight function (5.13) is a Gaussiau does not necessarily mean
that the present approximation describes a system of independent colour sources
(like the MV model). It just means that, in the MFA, all the correlations are
encoded in the width of the Gaussian, or, equivalently. in the 2-point function

(%) ol (yL))e = 3%8(y — y)0(r — ¥) p(ra,ya). (5.14)

But this 2-point function contains also information on the higher-point cor-
relations, although just in an averaged way, because it is determined by the
following, non-linear, self-consistency equation:

'dQZ_L - N
v {1, _ —— K{x,, = .
yr(TL ys) = | @) (P yr.z1) (

<t
—
(93]
~

X <1 + 5 (‘l:.'_a y_L) - &7 (-77_L1 1) — ST(;_L’ y_'_))a

which follows from eqs. (5.6) and (3.51) together with the fact that, for a Gaus-
sian weight function'?,

ab

(VIv)™), = o1

(T (Vi) V(un)) = 0%8(as ), (5.16)

-
with S, a (non-linear) functional of 4y, to be constructed shortly.

The correlation function (5.14) is local in y : colour sources located at dif-
ferent space-time rapidities appear to be statistically independent. This is, of
course, just an artifact of the MFA. The complete RGE generates correlations
in rapidity, via the Wilson lines in its coefficients. But the only trace of these
correlations in the MFA is the fact that the self-consistency equation (5.15) is
non-local in .

IZNote that. as compared to eq. (2.26), S- is now written in the adjoint representation.
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To perform the average in eq. (5.16), we first dmivc an evolution ecuation for
S, by using the corresponding equation (5.5) for 17,

o . ' OW o
o stea) = [l Ty, (5.17)
T ) or )

Yr(ty 1)

] =

Dla] Wi [or . 1}

/ [ed TWela] oy et (1L )dad (v )
N 1’\' . ) . T

= {%(u.u) + ey, yn) = 2y (e, w1 (oo, yu).

¢_:

(The functional derivatives of the Wilson lines have been evaluated as
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_Te(VIV,) = —¢* N Te(VIV) (80w = 0y (02u — dyu)s (5.18)
5(:\"#(’L1,_|_)(5a‘}_(vl)Tl( 2 .I) (/ Tr(VIV) (Gan — Sy ) (day Oyu ) {5.18)

where we have used eq. (3.53) and T°T° = N,..) Eq. (5.17) can be trivially inte-
grated. To simplify the calculations, we assuiie homogeneity in the transverse
plane within the hadron disk of radius R; then v (x1.y1) = w(re —yy) and

S (r1) = e~ 9 N [g dylw 0 )=y (ra )]SO(TJ_) = o N 0 —&r (ry )], (5.19)

where 1y =x) — 1,
Er(riy=&o(rL) + / dy vy (ra), {(5.20)
Joy

and in writing the second equality in (5.19) we have assuined that the initial
condition Sy{r1) can be written in the form Sy(ry) = =0 N [Eot0)—Lulrad]
This is indeed the case for the weight function in eq. (5.13) — in particular, for
the MV model, cf. cq. (2.60) —, which yields :

0
So(ry) = / dy 4 (r). {5.21)

By combining eqgs. (5.15), (5.19) and (5.20). one can finally rewrite the self-
consistency equation as an evolution equation for -(r1) :

O6r(er —yL)  _ / d*zy o
o = 7@ K(xr,yi,=1) (5.22)
(1+5(1¢—1/_L Srley —21)— "(_L_'U_L))

with S-(r1) = e 9 Nel&r (0=, (ra )} | Ag anticipated, this equation is highly non
linear in &;. It is furthermore non-local in the transverse coordinates, but local
in the “evolution time” 7. (The original non-locality of eq. (5.15) in y has been
now absorbed in the relation (5.20) between &, and ~,.)

In the next sections, we shall develop further approximations, which rely on the
kinematics and allow us to make progress with eq. (5.22).
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5.2 Saturation scale and Kinematical Approximations

Both the non-local and the nou-linear structure of the evolution equation (5.22)
depend crucially upon the behaviour of S (r1) with the transverse separation
ri. From its definition (5.16), it is clear that Sy (1) — 1 as r; — 0 for any
7. Moreover, since a large dipole is strongly absorbed by a hadronic target,
we expect that S;(rp) « 1 for sufficiently large », . where what we mean by
“sufficiently large” will generally depend on 7. For instance, we have seen in
Sect. 2.5, within the MV model, that S;{(r1) <« 1 for v 3 1/Qs, with Q; the
saturation scale for gluons in the hadron wavefunction (cf. eq. (2.76)). In that
classical model, Qs was independent of energy, but in general we expect it to
increase with 7, because of the quantum evolution (cf. the discussion in Sect.
1.4 and Sect. 5.3 below). At a formal level, this intimate connection between
the strong absorbtion limit for a colour dipole and gluon saturation is based on
the fact that, in both problems. the non-linear etfects are encoded in Wilson
lines. So, let us introduce the correlation length 1/Q.(7) of S:(ry) :

Sl Y 1, for ry <«
Sr(ra) ~ { 0, for ry

which, as its notation suggests, will play also the role of the saturation scale.
This behaviour of S, (r ), with an unique separation scale between a short-range
regime and a long-range one, is confirmed by numerical studies of the Kovchegov
equation, which also show a rapid increase of Q, with 7 [19, 50, 54, 58].

Eq. (5.23), together with the expression (5.19) for Sr(r1) in the MFA, imply
the following condition:

l/’(Qs(T) L
J‘/Qs(T) (5.23)

.(:IQIVIJ'[&T(O_L) - ST('..L\)] ~ 1 for r:~1/Q4(7), (H.24)

that we shall use later to obtain an estimnate for Q (7).

An external probe with transverse momentum k) will measure correlations in
the hadron over a typical transverse size ry ~ 1/k) . Thus, short distances . <
1/Qs(7) correspond to high momenta, k3 3 Q.(r), while large separations
ry 3> 1/Qs(7) correspond to low momenta k) € Q.(7). In what follows, we
shall not aim at a precise description of the physics around the saturation scale,
but rather focus on the two limiting regimes —- high—Fk,; and low—k — and
perform appropriate simplifications on the evolution equation (5.22).

a) High-k, . It is convenient to rewrite eq. (5.19) in momentum space as:

i W (-121)_'_ 3 ng T 3 [
S-(r1) = exp {—g”’NC W Er(py) [l — P '*] } . (H.25)
For 1y <« 1/Qs(7). the integral over p; is dominated by momenta within the
range Q.(7) < p1 <€ 1/r). This holds to leading transverse-log accuracy: In this
range, £-(py1) ~ 1/p1 (up to logs), so the integral over py produces the large
logarithm In(1/r% QZ(r)). To the same logarithmic accuracy, one can expand
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the exponential in (5.25) in powers of p, -7, like in eq. (2.64), and thus obtain:

1 /’ r

o (21\'7(- . d? Dt . .
Sr(r_) ~ exp{ — ]—zi / e i ET(pL)}. (5.26)

[

4 (2m)?

When extrapolated to ry ~ 1/Q4(7), this expression gives us the following
estimate for the correlation length 1/Q(7) (cf. eq. (5.24)) :

Q)
b} (kg j\l'( g " 9 9 . N -
(1) ~ _-l_ / dpp pi &x(po). {b.27)

For r1 < 1/Q(7), where eq. (5.26) is strictly valid, the exponential there can
be expanded to lowest order:

4 - N,

Se(ry) ~1~— 1

.2 2 ) -

ri (—VLST(I_L)),_Lzo. (5.28)
(The ultraviolet cutoff 1/ry is implicit in the momentum representation of
£-(0).) By inserting this into (5.22), we obtain a lincar evolution equation

for £,(ra):

96 (2 — yu) | / Pz (-2 =5 o
———— = Yg 7\7{- ) 5 - 529
or et J @m)2 (v — i)y —z1)° (5.29)

-
oy

X ((-l'_L - Y1)

Thus, the short-distaice approximation is automatically a linear, or weak-field,
approximation. This is to be expected since, at high %, . the gluon density is
low.

To perform the integral over =, in eq. (5.29), it is useful to recall eq. (3.48) and
then notice that, within the integrand of (5.29), one can effectively replace:

L (@ =y = =)
(2m)% (ap —z1)* (YL —20)?

— 392 (toal = o0 ] = 120}
- 1 ES

(The additional terms in the r.is. are d-functions at =y = vy or =) = yi,

which vanish when multiplied by the remaining factor in (5.29).) By using this,

together with a couple of integrations by parts w.r.t. =, and a Fourier transform

to momentum space, we finally obtain the following evolution equation:

t

"4

gy (K N, [ dp
Oprlke) _ wolNe [eoz (5.30)
or T J
for the quantity:
pr(ky) = K& (k1) (5.31)



which, physically, is the 2-point function of the colour charge density in the
transverse plane p®(x )

(PP (L)) e = 6Ppr(er —yn), plan) = / dy p(ra).  (5:32)

The initial condition for eq. (5.30) can be taken from the MV model: - (ky) =
pa for 7 =0, cf. eq. {(2.51). This initial condition is independent of &k, and,
together with eq. (5.30). it imnplies that (k) ) remains a rather slowly varying
function of Ay in this high momentum regime. This will be manifest on the
solutions to eq. (5.30) that we shall write in the next subsection.

b) Low-ky . For large distances r: >» 1/Qs(7). S-(r1) < 1, and the 2-point
functions of the Wilson lines can be simply 11egle(_ted in the self-consistency
cquations (5.15) or (5.22) [10, 57]. Eq. (5.22) then shnplifies to (see also
eq. (3.48))

éj)&T(av—L—y.L) —~ ]‘/'.‘.3,: LAY 1 7 1
57 ~ d zy 0Ly vz l=2) (i ] =7 le)
1

= —lul—gr

v, |?/_|_ (55._’))

or in momentum space (cf. eq. (5.20)):

96, (k)

(_)T

1

‘"yT(,I\-_L) = (5-34)

—Hr-—‘

=

}_L.

This is not an equation anylonger, but rather an explicit, and rather simple, ex-
pression for the propagator (ki) of the fields ¢« : this is just the 2-dimensional
Coulomb propagator.

Remarkably, the QCD coupling constant g has dropped out from egs. (5.33)
and (5.34). (This should be contrasted with the corresponding equd’rion at high
k1, eq. (5.29), whose r.lus. is explicitly proportional to «cs = g*/4m.) The same
property holds then for the corresponding mean-field Hamiltonian (cf. eq. (5.5)):

(27 Sovd (foy ) (—k1)

which is quite remarkable since at low k. we are effectively int a strong coupling
regime (in the sense that the COV-gange fields are strong: o® ~ 1/g; see Sect.
5.4). Tf g nevertheless drops out in this limit, it is because of the special way it
enters the evolution Hamiltonian: via the exponent of the Wilson lines. That
is, the relevant degrees of freedom in the non-linear regime are not the (strong)
colour fields by themselves, but rather the Wilson lines built with these fields.
The Wilson lines are rapidly oscillating over distances r1 % 1/Qs(7) (since
their exponent is of order one, and the typical scale for variations is 1/Q (1)),
and thus average to zero (“random phase approximation™).

- 1 A?ky 1 e s
Hl(-‘VV—k_L ~ — 5; / ‘ ) _I:‘T — N (1)35)
E L
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For what follows, it is useful to summarize the previous kinematical approxima-
tions into the following, factorized, form for the weight function (5.13), which
is most conveniently written as a weight function for® pS(ky) = k3 a®(ky) :

Welp] = WhHeh[pwlevp], (5.36)

Q. (¥}
_ , Phy pylko)py(=ky)
1/VTlc.wW[p] = -/VT exp{ _ I / / (‘ ? s (
2 (2m)? ki

/ / d* I\_L /‘ (’Z‘_L)/’v( I’—L) (r) 38)
— y(A—L) . {00008

20 Q)

(2
[
-1
—

l\:‘]r—i

)"V,!‘igh [ /)] = ./\/‘1_ exp{ —

In writing this equation, we have separated, for each rapidity y, the low-momentum
(k1 < Qs(y)) modes of p from the high-momentum (k1 > Q4(y)) ones, we
have used the approximation (5.34) for ‘rhe width of the Gaussian at low mo-
menta, and we have written Ay (ki) = dpy (k1) /0y, with p-(ky) determined by
eq. (5.30), at high momenta. Note that the modes with k3 ~ Q4(y) are not
correctly described by the present approximations, but we shall assume that
they give only small contributions to the quantities to be computed below.

5.3 High—k, : Recovering the perturbative evolution

We now consider the implications of egs. (5.30) and (5.38) for the physics at high
transverse momenta Ay 3> Q4(7). To this aim, we compute the gluon density
(2.23) in this low density regime, where one can use the linear approximation
FH(E) o (ik!/ k%) p(k). The caleulation is similar to that already performed in
eqs. (2.53)—(2.55). Specifically, by using (cf. eq. (5.38)) :

Apeyglra)

{(py(eL) pi} (L )e = 68y —¥)A (0L —ya ) A(ra) = oy (5.39)
one eventually obtains:
) N2 — 1 pr (ko) L
./\[7— k ~1‘— —5 s 5.40
(k1) N (5.40)
) Q-
; D \’TJ' -1 3 l,l;l“)
G QY = D R [ ), (5.41)
dr . kY
Q27

Note the lower limit Q,(7) in the integral giving xG(x, Q%) : for Q° 3 Q2 (1),
and to leading transverse-log accuracy, it is sufficient to consider the contribu-
tion of the high—k; modes of p to the gluon distribution. We shall check later
that the corresponding contribution of the modes with k| < Q,(7) is infrared

137 his is the colour charge density in the COV-gauge, but we omit the tilde svmbol on p,
to simplify writing.
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finite. although subleading as compared to eq. (5.41) [L0, 57]. This cures the
infrared problem that we have faced in the classical calculation of Sects. 2.4-2.5.
Physically, pi-(k)) plays the same role as g4 in the MV wodel: It measures
the density of the colour sources in the transverse plane, and, in the linear
regime at high—k,, it is also proportional to the unintegrated gluon distribu-
tion: pr(Q?) x 9xG(x, Q%) /0 Q? But unlike x4, which is constant for a
given atomic number A, p, (k1) has non-trivial dependences upon both 7 and
ki, as determined by its quantum evolution according to eq. (5.30). The de-
pendence on 7 describes the increase in the density of the colour sources via
soft gluon radiation. The dependence on &k corresponds in coordinate space to
correlations in the transverse plane, which occur via the exchange of quantum
gluons (see Fig. 17.a).

Eq. (5.30) can be recognized as the standard, linear evolution equation in the
double-logarithmic approximation (DLA) [5], i.e.. in the limit in which BFKL
and DGLAP coincide with each other. (In this limit, only the first, “real”, term
must be retained in the r.h.s. of the BFKL equation (3.59); for k) = py, this
term reduces indeed to that in eq. (5.30).) The emergence of DLA is natural,
given the approximations performed in deriving eq. (5.30): we have kept only
terms of leading-log accuracy in both 7 = In(1/x) (in the construction of the
effective theory), and lu(l:fi /Q2%(7)) (in the short-range expansion at high k).
Eqgs. (5.30) and (5.41) imply the more standard form of the DLA equation [5] :
oV

o? ) N '
L xG(x, QY = Ol O, ‘.
Or 0l Q* G X, Q7 T xC(x, Q) (5.42)

At large 7 and/or Q2, the solution to this equation increases like (with &, =
2 9 - .
asNe /7 and Qf sowme scale of reference) [5]

xG(x, Q%) x exp {2 s T ln(Qﬁ/Qa)} . (5.43)
where we have assumed o, to be independent of (%, If instead one takes the
running of the coupling into account, by writing as(Q%) = hy/ In(Q? /A'f;,(_ﬁ D)
then the dependence of the solution upon Q2 gets softer [5) :

xG(x. Q%) o exp 2\/1)0 Thl(ln(Qz/Aiy(_f[))) . (5.44)

In any case, eqs. (5.43) and (5.44) show that, at high transverse momenta
Q% > Q%(7), the gluon distribution xG(x,Q?) grows rapidly with 7. This
is the standard picture of parton evolution, which. if extrapolated to arbitrar-
ily high energies, would predict violations of the unitarity hound!*. But from
the previous analysis, we know that the approximations leading to eq. (5.42)
will break down at sufficiently large energies, where the non-linear etfects in

4 Note that, although slower than for the BFKL solution (3.6), the growth with 7 of the
DLA solution (5.43) or (5.44) is still faster than that of any power of 7~ Ins.



the quantum evolution cannot be neglected anylonger. Alternatively, for fixed
rapidity 7, the linear approximation breaks down at low transverse momenta
ki <« Qs(7), with Q4(7) the saturation scale. An estimate for this scale has
been given in eq. (5.27), which, together with eqs. (5.31) and (5.41), iplies:

QT
9 N e N, (lp W(}’QN 1 e B
Qi (1) = —4—5 / =l ir(pL) = NI xG(x, Q2 (1) (5.45)

By further combining this result with eq. (5.43) or (5.44), one can deduce the
7-dependence of the saturation scale in the DLA. One thus obtains:

Q1) = Q3etdT, (fixed coupling), (5.46)

and, respectively,
Qz(T) = A% ., eVoTinT (running coupling) (5.47)
s QCD ) g coup z). D)

Eq. (5.46) (or (5.47)) defines a curve in the 7 — kL plane. which divides this
plane in two (see Fig. 18) : Points ou its right are effectively in the high
momentum regime; they correspond to a dilute gas of weakly correlated colour
sources whose density is rapidly increasing with 7. Points on the left of the
saturation curve correspond to the low momentum regime, to be discussed in
the next subsection.

5.4 Low—hk,; : Coulomb gas and gluon saturation

We finally turn to the most interesting physical regime, that of the non-linear
physics at small transverse momenta k. <« Qq(7) (with k1 » Agcp, though),
whose understanding was a wain motivation for all the previous developments.
Within the effective theory, the low-momentum modes of the colour source
are described by the weight function W%, eq. (5.37). which is equivalently
rewritten as (cf. Fig. 18):

Q27

3 (] ( k )
Ay low - M. o _r &2 'I‘J_ / \( L 5 4R
W [p] = Ny exp 5 / e dy i . (5.48)

T(AJ_ }
with #(k) ) = the rapidity at which the saturation momentum is equal to k.
QiF(kyL)) = k5 . (5.49)

There are several noteworthy features about eq. (5.48) :

i) This describes a Coulomb gas, i.e., a system of colour charges interacting via
long-range Coulomb forces. The colour source pé(x 1) at ay feels the Coulomb
field cg(wy) created at xy by all the other sources:

)R (=ky) . ! o
[ BB [ ) = i) = [ Atenagien)
Jby ki Jary.y -Vi dry

EARON
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Figure 18: A “phase-diagram” of the various regions for evolution in the 7 —£&
plane.

The fact that the charge-charge correlator appears to vanish when by — 0is
in agreement with gauge symmetry: The colour source p¢(ky) at low k1 is an
induced source, whose global strength must vanish:

(Q%) = / / Pyl )py tyad) o {py (kL)pg (ko - =0. (5.50)
Jeyrdyy!

Ry =0

ii) The colour charge correlations are local in rapidity : the Coulomb forces
couple only sources located in the same layer of v (or ©7). At low-k, this
property is not just au artifact of the MFA, but rather has a deep physical
meaning: In the quantum evolution, the colour sources at different rapidities
get correlated with each other because of the presence of Wilson lines in the
evolution Hamiltonian (4.13). But these correlations are washed out on a large
scale 11 3> 1/Q4(7), on which the Wilson lines average to zero. In particular,
this explains why the width x Ix"i of the Gaussian {5.48) is independent of
the initial conditions at 7 ~ 0. (By contrast, at high momenta, the width
Ay (k1) = Opy(kL)/dy in eq. (5.38) is sensitive to the initial conditions, since
determined by solving eq. (5.30).)

ili) According to eq. (5.48), the low-momentumn modes of p are uniformly dis-
tributed in rapidity, within the interval 7(k,) < y « 7. It follows that the



integrated quautity:

dy LWL - (T - T(Iu)) iy (5.51)

(k) =

—

(k1)

which measures the density of sources (with given k) in the transverse plane,
grows only linearly with 7, that is. logarithmically with the energy. This is
to be contrasted with the strong, quasi-exponential, increase of p-(k1) in the
high-momentum regime (cf. eqgs. (5.43) and (5.44)). We conclude that. at low
momenta k) < Q7). the colour sources soturate, hecause of the strong non-
linear effects in the gquantum evolution.
iv} The saturated sources form the outermost layers of the hadron in the longitu~
dinal direction: for given kj . they are located at = > xje k1) i particular,
1 Q)

T ‘—‘%(l\_]_) -~ I;{—lll?—. (
(Vg a

[al
an
I
——

is the longitudinal extent of the saturated part of the hadron. in units of rapidity
(for modes with franverse momentum k). In writing (5.52), we have used the
DLA estimate (5.46) for the r-dependence of the saturation scale.

v) Note the factor 1/cv, in the r.hus. of (5.52); this implies that, at saturation, the
integrated charge density p?(xy) has typically large amplitudes: g~ \/W ~
1/g. The same is therefore true for the COV-gauge field o*(xy) : & ~ 1/g.

Since the colour sources at low—k | are saturated, there should be no surprise
that the gluons emitted by these sources are saturated as well, and this indepen-
dently of their mutual interactions (i.e., of the non-linear effects in the classical
Yang-Mills equations). Indeed, a quasi-Abelian calculation of the glion distribu-
tion, based on the lincarized solution F*+ (k) = (ik/ /k7 )p, yields the following
gluon density (ef. eqs. (5.40) and eq. (5.51)) :

ONZ=L 1 QAT
6me a, B

vy

N? -1 (T_ 7__(]“_)>

dmte

No(ky) =~ (5.53)
which already exhibits saturation ! In fact. as argued in Refs. [10]. the only
effect of the non-linearities in the classical Yang-Mills equations in this low-
ky regime is to modify the overall normalization of the linear-order result. In
anticipation of this, we have inserted in eq. (5.53) a corrective factor ¢, which
cannot be accurately determined in the present approximations (since sensitive
to the physics around @), but should be smaller than one (although not much
smaller).

Note the striking similarity between eq. (5.53) and the corresponding predic-
tion (2.71) of the classical MV model. Despite of the differences in the physical
mechanism leading to saturation — non-linear quantum evolution for eq. (5.53),
as opposed to non-linear classical dynamics for eq. (2.71) —, the final results
look very much the same. So, the earlier discussion of eq. (2.71) can be imme-
diately adapted to eq. (5.53), after replacing A — 5 : Eq. (5.53) shows marginal
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Figure 19: The gluon phase-density M-(ky )} in the effective theory plotted as a
function of k) for two values of 7= In(1/x).

saturation (in the sense of a logarithmic increase only) with both s and 1/k%,
with a typical amplitude of order 1/cs. This is illustrated in Fig. 19, which
should be compared to Fig. 13. (The high—k, behaviour in Fig. 19 is taken
from eq. (5.40).)

Aside from saturation, eq. (5.53) has also other important consequences, which
all reflect the proportionality to the rapidity window!® 7 — F(ky ), eq. (5.52):
a) Scaling. The gluon density at saturation depends upon the energy s and the
transverse momentum Ay only via the scaling variable

TEQﬁ(T)//;f"L. (

(2

54)

A similar scaling is observed in the solutions to the Kovchegov equation [19,
5G, 58]. As mentioned in the Introduction, such a scaling has been actually
observed in DIS at HERA [17].

b) Universality. Eq. (5.53) is only weakly sensitive — via its logarithmic de-
pendence upon the saturation scale — to the initial conditions for quantum
evolution, and therefore to the specific properties of the Ladron under consid-
eration (e.g., its size and atomic number). Thus, eq. (5.53) not only provides
arguments in the favour of hadron universality at high energy, but also predicts
what should be the pattern of its violation.

5 These properties are therefore generic: They hold for any quantity which receives his
dominant contributions from the saturated gluons.
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The gluon distribution xG(x, Q%) at Q? < @Q*(r) is imniediately obtained by
integration in eq. (5.53):

(J"
‘(v (Y Ni-11 (r)
xG(x, Q%) Tore 7. /4_
_ONZ-11 .
B l()ﬂ'z(_, (s R Q [ (@ '/Q ] . (5.55)

Note that, since p (k) ~ kri in the saturation regime (cf. eq. (5.51)), the
above integral is almost insensitive to the soft modes ki S Agep. This has
allowed us to extend the integration down to k) = 0 without loss of accuracy.
As anticipated, the phenomenon of saturation reduces the sensitivity of physical
quantities to the infrared gauge fields, thus making the weak coupling expansion
reliable. (In Ref. [58] a similar conclusion is drawn on the basis of Kovchegov
equation.) If extrapolated up to Q ~ @5, eq. {5.55) yiclds

N2 -1 1

Z o
R%( 5.50
1672¢ @, 2:(m) (5.56)

XG(x, Q) =
in rough agreement with the corresponding extrapolation from the high momen-
tum regime, eq. (5.45). Eq. (5.56) gives also the contribution of the saturated
modes to the gluon distribution at momenta @ > Q;(7). But for very high
momenta, Q > Q;(7). the dominant contribution comes form the hard modes
(Qs <k, S Q), and is given by eq. (5.41).

As a final application, let us compute the 2-point function 57 (ry ) of the Wilson
lines for large distances ry » 1/Qs(7). This is interesting for at least two
reasons: [t shows how the unitarity limit is reached for the scattering of a large
colour dipole off the hadron, and it allows us to check a posteriori the consistency
of the “random phase approximation” that we have used at low k.

To thiz aim, we rewrite eq. (5.25) as

2N, 1
Sr(ry) = exp{ g / / (‘)pJ' — [1 - e”"i'“] } (5.57)
2m)? pi

—%0

where we have anticipated that the main contribution comes from the saturated
modes, for which v, = 1/( Wpi), cf. eq. (5.34). The integral over p, is now
infrared finite (as opposed to the MV model: compare to eq. (2.64)), and to
leading log accuracy can be evaluated as:
Q.(y) » . :
arpy |: AP T , = ; N2y TEm
— = — |1 — e l]:HV—TT —ln((-,vr ) 5.08
./ (27_‘_)2 pi (- ( -L)) d7 125( ) 1 ()‘) )

The result can be understood as follows: as long as 1/r1 3 Qs(v), ory < 7(r>),
ePL T2 1 and the integral vanishes. Bur for v > 7(ry ), or 1/ry < Q4(y), the
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integrals corresponding to the two terms in the brackets are cut off at different
ultraviolet scales: Qs(y) for the first terw, and 1/ for the second one. Their
difference gives the log in the r.h.s. By also using ln(Qf(y)ri) =day—70ryL)).
of. eq. (5.52), and performing the integral over ¥, we finally deduce:

5
Se(ry) ~ exp{——2d-§(r — 7_'(7'_L))2} = exp{ - »};{111((2:’(7)7]’_)] }, (5.59)
e
which coincides with the result obtained from the Kovchegov equation [19, 14].
Eq. (5.59) shows that the correlator of the Wilson lines is rapidly decreasing
when Q%(T)Ii > 1, 50 that the RPA is indeed justified, at least as a mean field
approximation.
More details and further applications of the mean field approximation will be
presented in Ref. [57], where the results obtained in this way will be also
compared to the corresponding predictions of the Kovchegov equation. It would
be also interesting (especially in view of applications to phenomenology) to take
into account the transverse inhomogeneity of the hadron (i.e., the dependence
upon the impact parameter in the transverse plane). This can be done already
in the framework of the MFA, but, more generally, it would be important to
understand the limitations of the latter, and to be able to solve the complete
RGE. This might be done, for instance, via numnerical simulations on a lattice.
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